r13	Puge No 1						
Property of							
	P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Fourth Semester, B.E Semester End Examination; May/June - 2018 Engineering Mathematics - IV						
Tin	(Common to EE, EC, CS, IS Branches) ne: 3 hrs Max. Marks: 100						
	<i>e</i> : Answer <i>FIVE</i> full questions, selecting <i>ONE</i> full question from each unit.						
	UNIT - I						
1 a.	Find a real root of the equation $x \log_{10} x = 1.2$ correct to five decimal places using the						
	Newton Raphson method.						
b.	Find real root of the equation $\cos x = 3x - 1$ correct to three decimal places using Regula falsi method.						
c.	Find a real root of the equation $x^3 - x - 1 = 0$ using fixed point iteration method. Accelerate						
	the convergence by Aitkin's Δ^2 -method. Carry out three iterations.						
2 a.	Using modified Euler's method find y at $x = 0.2$ given that,						
	$\frac{dy}{dx} = 3x + \frac{1}{2}y$ with $y(0) = 1$ taking $h = 0.1$. Perform three iterations at each step.						
b.	Using Runge-Kutta method of fourth order, find $y(0.2)$ for the equation						
	$\frac{dy}{dx} = \frac{y-x}{y+x}$ with $y(0) = 1$ at taking $h = 0.1$.						
c.	Apply Adams-Bashforth method to solve the equation; $(y^2 + 1)dy - x^2dx = 0$ at $x = 1$ given						
	y(0) = 1, y(0.25) = 1.0026, y(0.5) = 1.0206, y(0.75) = 1.0679. Applying corrector formula						
	twice.						
	UNIT - II						
3 a.	Define Vector space and Subspace. Give with suitable examples.						
b.	Find the change of basis matrix P from usual basis,						
	$E = \{e_1, e_2, e_3\}$ of R^3 to the basis $S = \{w_1 = (1, 1, 1), w_2 = (1, 1, 0), w_3 = (1, 0, 0)\}$.						
c.	Find Rank and nullity of the linear transformation						
	$T: \mathbb{R}^3 \to \mathbb{R}^3$ by $T(x, y, z) = (x + z, x + y + 2z, 2x + y + 3z).$						
1 a.	Apply Gauss-Seidal iterative method to solve the equations 27x+6y-z=85; $6x+15y+2z=72$; $x+y+54z=110$. Perform three iterations.						

- b. Solve by relaxation method: 10x 2y 2z = 6; -x + 10y 2z = 7; -x y + 10z = 8. 7
- c. Determine the largest eigen value and the corresponding eigen vector of the matrix 7

P15MAES41

Page No... 2

6

7

7

7

6

7

7

6

$$A = \begin{bmatrix} 2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2 \end{bmatrix}$$
. Taking initially $\begin{bmatrix} 1, & 0, & 0 \end{bmatrix}^T$. (Perform six iterations).

UNIT - III

- 5 a. Show that $f(z) = \sin z$ is analytic and hence find f'(z).
 - b. Find analytic function f(z) as a function of z given that the sum of its real and imaginary part is $x^3 y^3 + 3xy(x y)$.
 - c. Find the Bilinear transformation that maps the points $z_1 = 0$, $z_2 = -i$, $z_3 = 2i$ into the points $w_1 = 5i$, $w_2 = \infty$, $w_3 = -i/3$ respectively.
- 6 a. Evaluate $\int_{0}^{2+i} (\overline{z})^2 dz$ along the line x = 2y. 6
 - b. Expand $f(z) = \frac{1}{(z-1)(2-z)}$ as a Laurent's series valid for (i) |z| < 1 (ii) 1 < |z| < 2.

c. Using the Cauchy's residue theorem, evaluate $\int_{c} \frac{Sin\pi z^{2} + \cos \pi z^{2}}{(z-1)^{2}(z-2)}$ where C is the circle |z| = 3. 7

UNIT - IV

- 7 a. In a certain distribution $\{x_i, f_i\}_{i=1,2,3,...n}$. The first four moments about the point '5' are -1.5, 17, -30 and 108. Calculate the skewness and kurtosis.
 - b. Fit a parabola for the following data :

x	1	2	3	4	5	6	7	8	9
у	2	6	7	8	10	11	11	10	9

c. If θ is the angle between the two regression lines, show that $\tan \theta = \left(\frac{1-r^2}{r}\right) \frac{\sigma_x \sigma_y}{\sigma_x^2 + \sigma_y^2}$.

Explain the significance when r = 0 and $r = \pm 1$.

8 a. The probability distribution of a finite random variable x is given by the following table :

x_i	-2	-1	0	1	2	3
$P(x_i)$	0.1	k	0.2	2 <i>k</i>	0.3	k

Find the value of *k*, mean and variance.

- A communication channel receives independent pulses at the rate of 12 pulses per micro second. The probability of transmission error is 0.001 for each microsecond. Compute the probabilities of;
 - (i) No error during a micro second
- (ii) One error per microsecond
- (iii) At least one error per microsecond

Page No... 3

c. In a normal distribution 31% of the items are under 45 and 8% of the items are over 64. Find the mean and S.D. of the distribution $[\phi(0.5) = 0.19; \phi(1.4) = 0.42]$.

```
UNIT - V
```

9 a. The joint distribution of two random variables *X* and *Y* is as follows:

Y	-4	2	7
1	1/8	1/4	1/8
5	1/4	1/8	1/8

Find;

- (i) E(X) and E(Y) (ii) E(XY) (iii) σ_x and σ_y
- b. Find the unique fixed probability vector for the regular stochastic matrix,

$$A = \begin{bmatrix} 0 & 1 & 0 \\ \frac{1}{6} & \frac{1}{2} & \frac{1}{3} \\ 0 & \frac{2}{3} & \frac{1}{3} \end{bmatrix}$$

$$7$$

c. If X and Y are contineous random variables having the joint density function

$$f(x, y) = \begin{cases} C(x^2 + y^2); & 0 \le x \le 1, \\ 0, & otherwise \end{cases}$$

Determine;

(ii)
$$P(X < \frac{1}{2}, Y > \frac{1}{2})$$

(iii)
$$P\left(\frac{1}{4} < X < \frac{3}{4}\right)$$

10 a. Obtain the series solution of the differential equation $\frac{d^2 y}{dx^2} + xy = 0$.

- b. Obtain $J_n(x)$ as a solution of the Bassel's differential equation $x^2y'' + xy' + (x^2 n^2)y = 0.$ 7
- c. State Rodrigue's formula. Express $x^3 + x^2 + x + 1$ in terms of Legendre's polynomials.

P15MAES41

7

6

7

6

7