P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Fourth Semester, B.E. - Semester End Examination; May/June - 2018
Engineering Mathematics - IV
(Common to EE, EC, CS, IS Branches)
Max. Marks: 100

Time: 3 hrs

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

1 a. Find a real root of the equation $x \log _{10} x=1.2$ correct to five decimal places using the Newton Raphson method.
b. Find real root of the equation $\cos x=3 x-1$ correct to three decimal places using Regula falsi method.
c. Find a real root of the equation $x^{3}-x-1=0$ using fixed point iteration method. Accelerate the convergence by Aitkin's Δ^{2}-method. Carry out three iterations.
2 a. Using modified Euler's method find y at $x=0.2$ given that, $\frac{d y}{d x}=3 x+\frac{1}{2} y \quad$ with $y(0)=1$ taking $h=0.1$. Perform three iterations at each step.
b. Using Runge-Kutta method of fourth order, find $y(0.2)$ for the equation
$\frac{d y}{d x}=\frac{y-x}{y+x}$ with $y(0)=1$ at taking $h=0.1$.
c. Apply Adams-Bashforth method to solve the equation; $\left(y^{2}+1\right) d y-x^{2} d x=0$ at $x=1$ given $y(0)=1, y(0.25)=1.0026, y(0.5)=1.0206, y(0.75)=1.0679$. Applying corrector formula twice.

UNIT - II

3 a. Define Vector space and Subspace. Give with suitable examples.
b. Find the change of basis matrix P from usual basis,
$E=\left\{e_{1}, e_{2}, e_{3}\right\}$ of R^{3} to the basis $S=\left\{w_{1}=(1,1,1), w_{2}=(1,1,0), w_{3}=(1,0,0)\right\}$.
c. Find Rank and nullity of the linear transformation
$T: R^{3} \rightarrow R^{3}$ by $T(x, y, z)=(x+z, x+y+2 z, 2 x+y+3 z)$.
4 a. Apply Gauss-Seidal iterative method to solve the equations
$27 x+6 y-z=85 ; 6 x+15 y+2 z=72 ; x+y+54 z=110$. Perform three iterations.
b. Solve by relaxation method: $10 x-2 y-2 z=6 ;-x+10 y-2 z=7 ;-x-y+10 z=8$.
c. Determine the largest eigen value and the corresponding eigen vector of the matrix
$A=\left[\begin{array}{ccc}2 & -1 & 0 \\ -1 & 2 & -1 \\ 0 & -1 & 2\end{array}\right]$. Taking initially $[1,0,0]^{T} .($ Perform six iterations).

UNIT - III

5 a. Show that $f(z)=\sin z$ is analytic and hence find $f^{\prime}(z)$.
b. Find analytic function $f(z)$ as a function of z given that the sum of its real and imaginary part is $x^{3}-y^{3}+3 x y(x-y)$.
c. Find the Bilinear transformation that maps the points $z_{1}=0, z_{2}=-i$, $z_{3}=2 i$ into the points $w_{1}=5 i, w_{2}=\infty, w_{3}=-i / 3$ respectively.

6 a. Evaluate $\int_{0}^{2+i}(\bar{z})^{2} d z$ along the line $x=2 y$.
b. Expand $f(z)=\frac{1}{(z-1)(2-z)}$ as a Laurent's series valid for (i) $|z|<1$
(ii) $1<|z|<2$.
c. Using the Cauchy's residue theorem, evaluate $\int_{c} \frac{\operatorname{Sin} \pi z^{2}+\cos \pi z^{2}}{(z-1)^{2}(z-2)}$ where C is the circle $|z|=3$.

UNIT - IV

7 a. In a certain distribution $\left\{x_{i}, f_{i}\right\}_{i=1,2,3, \ldots . .}$. The first four moments about the point ' 5 ' are -1.5 , 17, -30 and 108. Calculate the skewness and kurtosis.
b. Fit a parabola for the following data :

x	1	2	3	4	5	6	7	8	9
y	2	6	7	8	10	11	11	10	9

c. If θ is the angle between the two regression lines, show that $\tan \theta=\left(\frac{1-r^{2}}{r}\right) \frac{\sigma_{x} \sigma_{y}}{\sigma_{x}^{2}+\sigma_{y}^{2}}$.

Explain the significance when $r=0$ and $r= \pm 1$.
8 a. The probability distribution of a finite random variable x is given by the following table :

x_{i}	-2	-1	0	1	2	3
$P\left(x_{i}\right)$	0.1	k	0.2	$2 k$	0.3	k

Find the value of k, mean and variance.
b. A communication channel receives independent pulses at the rate of 12 pulses per micro second. The probability of transmission error is 0.001 for each microsecond. Compute the probabilities of;
(i) No error during a micro second
(ii) One error per microsecond
(iii) At least one error per microsecond
c. In a normal distribution 31% of the items are under 45 and 8% of the items are over 64 . Find the mean and S.D. of the distribution $[\phi(0.5)=0.19 ; \phi(1.4)=0.42]$.

UNIT - V

9 a. The joint distribution of two random variables X and Y is as follows:

Y	-4	2	7
1	$1 / 8$	$1 / 4$	$1 / 8$
5	$1 / 4$	$1 / 8$	$1 / 8$

Find ;
(i) $E(X)$ and $E(Y)$
(ii) $E(X Y)$
(iii) σ_{x} and σ_{y}
b. Find the unique fixed probability vector for the regular stochastic matrix,

$$
A=\left[\begin{array}{ccc}
0 & 1 & 0 \\
1 / 6 & 1 / 2 & 1 / 3 \\
0 & 2 / 3 & 1 / 3
\end{array}\right]
$$

c. If X and Y are contineous random variables having the joint density function

$$
f(x, y)=\left\{\begin{array}{cl}
C\left(x^{2}+y^{2}\right) ; & 0 \leq x \leq 1, \quad 0 \leq y \leq 1 \\
0, & \text { otherwise }
\end{array}\right.
$$

Determine;
(i) Constant ' C '
(ii) $P\left(X<\frac{1}{2}, Y>\frac{1}{2}\right)$
(iii) $P\left(\frac{1}{4}<X<\frac{3}{4}\right)$

10 a. Obtain the series solution of the differential equation $\frac{d^{2} y}{d x^{2}}+x y=0$.
b. Obtain $J_{n}(x)$ as a solution of the Bassel's differential equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-n^{2}\right) y=0$.
c. State Rodrigue's formula. Express $x^{3}+x^{2}+x+1$ in terms of Legendre's polynomials.

