I	P15MCA25 Page No 1										
U.S.N U.S.N P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Second Semester, Master of Computer Applications (MCA) Semester End Examination; May/June - 2018											
,	Operation Research Time: 3 hrs Max. Marks: 100										
	Time: 3 hrs Max. Marks: 100 Note: Answer FIVE full questions, selecting ONE full question from each unit. UNIT - I										
1 a.	List the six Phases of OR study and write the advantages and limitations of Operation Research study.	10									
b.	A marketing managers wishes to allocate his annual advertising budget of Rs 20,000 in two media groups M and N. The unit cost of the message in media M is Rs 200 and N is Rs 300. The media M is monthly magazine and not more than two insertions are desired in one issue. Atleast										
	five messages should appear in the media N. The expected effective audience per unit message for media M is 4,000 and for N is 5,000. Formulate the problem as a linear programming problem.										
2 a.	Write short note on area of applications of operation research.	6									
b.	Write the general form of a Linear Programming Problem (LPP) with usual notation.	6									
c.	Solve the LPP by geographical method;										
	Minimize $Z = 20x + 10y$	8									
	Such that $x+2y \le 40$; $3x+y \ge 30$; $4x + 3y \ge 60$ and $x \ge 0$, $y \ge 0$										
	UNIT - II										
	Explain the following related to LPP;i) Feasible solution ii) No solution iii) Unbounded solution iv) Optimal solutionSolve the following LPP by simplex method;	8									
0.	Max $Z = 3x_1+2x_2$ Subjected to $x_1 + x_2 \le 4$; $x_1 - x_2 \le 2$ and $x_1, x_2 \ge 0$	12									
4 a.	Define Slack, Surplus, Artificial variables with an example for an each										
b.											
c.	Solve the LPP using Big-M method;										
	Maximize $Z = 6x+4y$ Such that $2x+3y \le 30$; $3x+2y \le 24$; $x+y \ge 3$; $x, y \ge 0$	10									
	UNIT - III										

- 5 a. Write the dual of the following primal problems :
 - i) Max $Z = x_1 + 2x_2 + x_3$ Show that $2x_1 + x_2 - x_3 \le 2$; $-2x_1 + x_2 - 5x_3 \ge -6$; $4x_1 + x_2 + x_3 \le 6$, $x_1, x_2, x_3 \ge 0$ 10
 - *ii)* Min $Z = 0.4 x_1 + 0.5 x_2$ Show that $0.3 x_1 + 0.1 x_2 \le 2.7$; $0.5 x_1 + 0.4 x_2 \ge 6$, $x_1, x_2 \ge 0$

Contd...2

- b. Explain the following terms in post optimality analysis :
 - i) Re-optimization ii) Parametric linear programming iii) Shadow prices iv) Sensitivity analysis
- 6 a. Explain the role of duality theory in sensitivity analysis (Changes).
 - b. Write the steps involved in Dual simplex method.

P15MCA25

UNIT - IV

7 a. Obtain the initial basic feasible solution of the transportation problem (Cost in Rupees) by;i)North-West corner ruleii) Least Cost methodiii) Vogel's approximation method

	Destination		
	2	7	4
Origin	3	3	1
Origin	5	4	7
	1	6	2
	8	8	18

- b. Explain degeneracy in transformation problem and unbalance transformation problem.
- 8 a. Explain the general Assignment problem, Unbalanced assignment problem, Maximization type assignment problem.
 - b. Solve the following assignment problem when the entries indicate the profits by assigning jobs to persons. Who will be the idle person?

	J_1	J_2	J_3	\mathbf{J}_4				
P_1	11	3	5	8				
P_2	9	9	8	4				
P_3	10	3	5	10				
P_1 P_2 P_3 P_4 P_5	4	13	12	11				
P_5	8	9	10	4				

UNIT - V

- 9 a. Write the steps in Basic Simulated Annealing algorithm.
 - b. Explain Briefly Meta heuristics and its nature.
 - c. Explain with an example, how to find minimal spanning tree problem with constraints?
- 10 a. Solve the game Whose pay off matrix is giving by,

b. Using dominance property solve the where pay off matrix of player A is given

			В		
	2	4	3	8	4
٨	5	6	3	7	8
A	6	7	9	8	7
	4	2	8	4	3
•	2				

c. Solve graphically the following 2 x 3 game

7

7

* * * *

Page No... 2

10

10 10

15

5

8

12

6

7

7