

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)
Fourth Semester, Master of Computer Applications (MCA)
Semester End Examination; May / June - 2018
Data Warehousing and Data Mining

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

- 1 a. Define Star-schema and Snowflake schema. Design Star-schema and Snowflake schema of a data warehouse for sales containing sales as a fact table with time, item, branch and location as dimension table. Assume suitable attributes for each.
 - b. Differentiate between OLTP and OLAP. 5
 - c. Write the syntax for cube definition and dimension definition.
- 2 a. Discuss all OLAP operations in the multidimensional data along with example.
 - b. Discuss guidelines for data warehouse implementation.

UNIT - II

- 3 a. What is Data mining? Explain the process of Knowledge Discovery in Databases (KDD) with a neat diagram.
 - b. Define simple matching coefficient and Jaccard coefficient with the equation.
 - c. Explain the different characteristics of datasets.
- 4 a. Explain any five data mining applications.
 - b. Explain different types of attributes with an example and list the properties that describe attributes.

UNIT - III

- 5 a. Write and discuss the Apriori algorithm for the frequent item set generation.
 - b. Explain alternative methods for generating frequent item set generation.
- 6 a. What is FP-tree? Construct an FP-tree for following transaction data along with steps involved in the construction:

TID	Items
1	{a, b}
2	{b, c, d}
3	$\{a, c, d, c\}$
4	{a, d, e}
5	{a, b, c}
6	$\{a, b, c, d\}$
7	{a}
8	$\{a, b, c\}$
9	{a, b, d}
10	{b, c,e}

10

10

8

4

10

P15MCA453 Page No 2 b. Explain the factor that affects the computational complexity of the Apriori algorithm.	10	
UNIT - IV		
7 a. Explain general approach for solving classification problem along with performance metrics.	8	
b. Explain the attribute test conditions for binary, nominal, ordinal and continuous.		
8 a. Write the algorithm for decision tree and explain the steps of algorithm.		
b. Explain the steps for Naive Bayesian classifier.		
UNIT - V		
9 a. Write the DBSCAN algorithm and explain time and space complexity in DBSCAN.		
b. Explain agglomerative and divisive hierarchical clustering with an example.		
c. Write the steps in K-means algorithms.		
10 a. Explain the requirement of clustering in data mining.		
b. Explain different types of cluster analysis methods.		

* * * *