

P15ME63

Page No... 2

10

10

8

8

4

6

6

8

- 4 a. Show that the temperature distribution in lumped system is given by $\frac{T-T_{00}}{T_0-T_{00}} = e^{-(Bi)(F_0)}$
 - b. A long 15 cm diameter cylindrical shaft made of stainless steel (K = 14.9 W/mC), $\rho = 7900 \text{ kg/m}^3$, $C_{\rho} = 477 \text{ J/kgC}$ and $\alpha = 3.95 \times 10^{-6} \text{ m}^2/\text{s}$, comes out of an oven at a uniform temperature of 450°C. The shaft is then allowed to cool slowly in a chamber at 150°C with an average heat transfer coefficient of 85 W/m²C. Determine;
 - i) The temperature at the centre of the shaft 25 min after the start of the cooling process.
 - ii) The surface temperature at that time
 - iii) The heat transfer per unit length of the shaft during this time period.

UNIT -III

- 5 a. Engine oil at 30°C is flowing with a velocity of 2 m/s along the length of a flat plate maintained at 90°C. Calculate at a distance of 40 cm from the leading edge.
 - i) Hydrodynamic and thermal boundary later thickness
 - ii) Local and average values of friction coefficient
 - iii) Local and average values of heat transfer coefficient
 - iv) Heat transferred from the first 40cm of the plate for unit width.
 - b. A hot square plate 40 cm \times 40 cm at 100°C is exposed to atmospheric air at 20°C. Make calculations for the heat loss from both surfaces of the plate. If;
 - i) The plate is kept vertical ii) The plate is kept horizontal
 - The following empirical correlations have been suggested :

 $Nu = 0.125(Gr.Pr)^{0.33}$ for vertical position of the plate

 $Nu = 0.72(Gr.Pr)^{0.25}$ for upper surface

 $Nu = 0.35(Gr.Pr)^{0.25}$ for lower surface

Where the air properties are evaluated at the mean temperature.

c. Write the significance of;

i) Grashoff number ii) Nusselt number.

- 6 a. Estimate the heat transfer rate from a 100 W incandescent bulb at 140°C to an ambient at 24°C. Approximate the bulb at 60 mm diameter sphere. Calculate the percentage of power lost by natural convection. Use the following correlation and air properties: $N_u = 0.6(Gr.Pr)^{0.25}$, the properties of air at 82°C are: $\gamma = 21.46 \times 10^{-6} \text{ m}^2/\text{s}$, $K = 30.38 \times 10^{-3} \text{ W/mK}$ and $P_r = 0.699$.
 - b. Calculate the rate of heat loss from a human body which may be considered as a vertical cylinder of 30 cm in diameter and 175 cm high, while standing in a 30 km/hr wind at 15°C the surface temperature of the human body is 35°C.
 - c. Show using Buckingham- π theorem of dimensional analysis, that in a natural convection problem, the Nusselt number is a function of Grashoff number and Prandtl number.

12

8

10

7 a. State and explain;

i) Kirchhoff's law	ii) Wein's displacement law	
--------------------	-----------------------------	--

- iii) Planck's law iv) Lambert cosine law.
- b. Consider two large parallel plates at $t_1 = 727^{\circ}C$ with emissivity $\varepsilon_1 = 0.8$ and $t_2 = 227^{\circ}C$ with emissivity $\varepsilon_2 = 0.4$. An aluminum radiation shield with an emissivity, $\varepsilon_s = 0.05$ on both sides is placed between the plates. Calculate the percentage reduction in heat transfer rate between the two plates as a result of the shield.
- 8 a. Prove that for a black body enclosed in a hemispherical space, the emissive power of the black 10 body is equal to π times its intensity of radiation.
 - b. Calculate the following for an industrial furnace in the form of a black body and emitting radiation at 2500°C.
 - i) Monochromatic emissive power at 1.2 µm length
 - ii) Wavelength at which the emission is maximum
 - iii) Maximum emissive power
 - iv) Total emissive power
 - v) Total emissive power of the furnace if it is assumed as a real surface with emissivity equal to 0.9

UNIT - V

9 a.	9 a. Obtain an expression for the effectiveness of a parallel flow heat exchanger in terms of 'NTU' and the capacity ratio 'C'.	
b.	Explain Fick's first law of diffusion.	6
c.	Differentiate between film wise and drop wise condensation.	4
10 a.	With the help of a typical experiment boiling curve, explain the different regimes of pool boiling.	8
b.	Write a note on fouling factor in heat exchangers.	4
c.	A counter flow double pipe heat exchanger using superheated steam is used to heat water at the	
	rate of 10500 kg/h. The steam enters the heat exchanger at 180°C and leaves at 130°C. The inlet	
	and exit temperature of water are 30°C and 80°C respectively. If overall heat transfer coefficient	8
	from steam to water is 814 $W/m^{2^{\circ}}C$, calculate the heat transfer area. What would be the increase in	
	area if the fluid flows were parallel?	

* * * *