P15	5PH12/22			Рс	ige I	No	1		
	U.S.N								
i	P.E.S. College of Engineering, Ma (An Autonomous Institution affiliated to V Second Semester, B.E Semester End Examin Engineering Physics (Common to all Branches)	TU, B	elag	avi))18		
	Time: 3 hrs			\boldsymbol{N}	Iax.	Mar	ks: 1	00	
	Course Outcome								
CO3: 1 CO4: 1 CO5: 1 Note:	applicable to engineering field. Apply the knowledge of Physics allied with the field of engineering application Formulate the expressions for the concepts of Physics pertaining to engineer Analyze by solving the problems in Physics for better understanding of engine Answer FIVE full questions, selecting ONE full question from each constants: Electron mass, $m = 9.11 \times 10^{-31}$ kg, Electron charge, $e = 1.602 \times 10^{-19}$ C: Velocity of n constant, $K = 1.38 \times 10^{-23}$ JK ⁻¹ ; Avogadro number, $N = 6.025 \times 10^{-37}$ /mole; Permittivity of free spo	ring field neering o Unit light, c =	$\frac{conce}{3x10^8}$	ms ⁻¹ ;	Planck	's const	ant, h =	6.626x	10 ⁻³⁴ Js
). No.	Questions				Μ	larks	CO	BL	PO
1 a.	i) Define the three modulli of elasticity.					2	CO1	L1	
1 a.	ii) Explain the Poisson's ratio must lies between -1 and 0.5 using th three modulli of elasticity.	e relati	on be	etwee	en	1		L1 L2	PO
b.	i) Define Piezoelectricity and Ferroelectricity.					3	CO1	L1	PO
	ii) Mention the applications of dielectric materials.					4	CO3	LI	FU
c.	i) What is bending of beam?ii) Explain I-shaped girders.					5	CO1 CO2	L1 L2	PO
2 a.	i) Define Dielectric loss.					2	CO1	L1	DO
	ii) Derive Clausius-Mossotti equation for a dielectric material.					6	CO4	L3	PO
b.	Derive an expression for Yong's modulus (q) by uniform bending me	ethod.				7	CO4	L3	PO
c.		c constant of sulphur is 3.4, assuming the internal field as Lorentz field e electronic polarizability of sulphur. Give that density of $7x10^3$ kg/m ³ and atomic weight = 32.07.				5	CO5	L3	PO
	UNIT - II								
	How black body radiation spectrum can be explained using Planck'	s law.	Wier	's la	W	0	CO1	L1	PO
3 a.	and Rayleigh-Jeans law.					8	CO1	LI	10

1) what is wave function?	7	COI	LI	PO1	
ii) Explain the physical significance of a wave function.	/	CO2	L2	rUI	
Compare the de-Broglie wavelength of a 2000 kg automobile travelling at a speed of 50 m/s and 0.2 kg bullet travelling at a speed of 250 m/s.	5	CO5	L2	PO2	
Solve Schrodinger's wave equation for allowed energy values in case of a particle in an infinite potential well.	8	CO4	L3	PO1	
i) Mention the characteristics properties of matter wave.	2	CO1	L1	PO1	
ii) Obtain the relation between group velocity, phase velocity and velocity of light.	5	CO3	L3	rUI	
An electron is bound in one dimensional potential box of width $4x10^{-10}$ m. compute the energy and de-Broglie wavelengths in ground state and first excited state.	5	CO5	L3	PO2	
	 ii) Explain the physical significance of a wave function. Compare the de-Broglie wavelength of a 2000 kg automobile travelling at a speed of 50 m/s and 0.2 kg bullet travelling at a speed of 250 m/s. Solve Schrodinger's wave equation for allowed energy values in case of a particle in an infinite potential well. i) Mention the characteristics properties of matter wave. ii) Obtain the relation between group velocity, phase velocity and velocity of light. An electron is bound in one dimensional potential box of width 4x10⁻¹⁰ m. compute 	77ii) Explain the physical significance of a wave function.7Compare the de-Broglie wavelength of a 2000 kg automobile travelling at a speed of 50 m/s and 0.2 kg bullet travelling at a speed of 250 m/s.5Solve Schrodinger's wave equation for allowed energy values in case of a particle in an infinite potential well.8i) Mention the characteristics properties of matter wave.2ii) Obtain the relation between group velocity, phase velocity and velocity of light.5An electron is bound in one dimensional potential box of width $4x10^{-10}$ m. compute5	77CO2ii) Explain the physical significance of a wave function.7CO2Compare the de-Broglie wavelength of a 2000 kg automobile travelling at a speed of 50 m/s and 0.2 kg bullet travelling at a speed of 250 m/s.5CO5Solve Schrodinger's wave equation for allowed energy values in case of a particle in an infinite potential well.8CO4i) Mention the characteristics properties of matter wave.2CO1ii) Obtain the relation between group velocity, phase velocity and velocity of light.5CO3An electron is bound in one dimensional potential box of width $4x10^{-10}$ m. compute5CO5	77CO2L2Compare the de-Broglie wavelength of a 2000 kg automobile travelling at a speed of 50 m/s and 0.2 kg bullet travelling at a speed of 250 m/s.5CO5L2Solve Schrodinger's wave equation for allowed energy values in case of a particle in an infinite potential well.8CO4L3i) Mention the characteristics properties of matter wave.2CO1L1ii) Obtain the relation between group velocity, phase velocity and velocity of light.5CO3L3An electron is bound in one dimensional potential box of width $4x10^{-10}$ m. compute5CO5L3	

P15PH12/22

	UNIT - III				
5 a.	Derive an expression for the hole concentration in an intrinsic semiconductors.	8	CO4	L3	PO1
b.	Explain the variation of Fermi energy with temperature at $T = 0$ K and $T > 0$ K.	7	CO2	L2	PO1
c.	Show that, $E_F = \left(\frac{E_C + E_V}{2}\right) - \frac{3}{4}kT \ln\left(\frac{m_e^*}{m_h^*}\right).$	5	CO3	L3	PO1
6 a.	i) Define density of states.	1	CO1	L1	
	ii) Derive an expression for the density of states for conduction electrons for unit volume of metal.	7	CO4	L3	PO1
b.	Explain the significance of Fermi level in intrinsic and extrinsic semiconductors.	7	CO2	L2	PO1
c.	Calculate the probability of an electron occupying an energy level of 0.05 eV at 500 K above and below the Fermi level.	5	CO5	L3	PO2
	UNIT - IV				
7 a.	i) What are superconductors?	2	CO1	L1	
	ii) Write a note on temperature dependence of resistivity and critical magnetic field in a superconductor.	6	CO1	L2	PO1
b.	Write a brief note on Carbon nanotubes and their types with some important properties.	7	CO1	L2	PO1
с.	i) Define Isotopic effect.		CO1	L1	PO1
	ii) In a superconducting material Isotopic mass is 199.5 amu and critical temperature is 5 K. Calculate isotopic mass at 5.2 K.	5	CO5	L3	PO2
8 a.	Explain the confinement of electron energy states in 0D, 1D, 2D and 3D system.		CO2	L2	PO1
b.	Explain Meissner's effect and Type – II superconductor.	7	CO2	L2	PO1
с.	Discuss briefly on Scanning Tunneling Microscope (STM).	5	CO2	L2	PO1
	UNIT - V				
9 a.	i) Define metastable state.	2	CO1	L1	PO1
	ii) Write a note on population inversion.	3	CO1	L2	- 01
b.	i) Define angle of acceptance and numerical aperture.	2	CO1	L1	PO1
	ii) With a neat diagram, explain step index multimode optical fiber.	3	CO2	L2	
с.	i) What is meant by non-destructive method of testing the materials?	2	CO1	L1	PO1
	ii) An ultra sound pulse sent by a source in sea is reflected by a submerged target at a distance 597.5 m and reaches the sources after 0.83 s. Find the velocity of sound in	3	CO5	L3	PO2
	sea water.				
d.	sea water. Discuss the various factors affecting the acoustics of an auditorium.	5	CO2	L2	PO1
d. 10 a.		5 5	CO2 CO5	L2 L3	PO1 PO1
	Discuss the various factors affecting the acoustics of an auditorium. A pulse from laser with power 1 mW last for 9 ns. If the number of photons emitted per				
10 a.	Discuss the various factors affecting the acoustics of an auditorium. A pulse from laser with power 1 mW last for 9 ns. If the number of photons emitted per second is 3.41x10 ⁷ , calculate the wavelength of laser. Calculate the numerical aperture and angle of acceptance of a given optical fiber, if the	5	CO5	L3	PO1