
\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi) Second Semester, B.E. - Semester End Examination; May / June - 2018 Basic Electrical Engineering (Common to All Branches)
Time: 3 hrs
Max. Marks: 100
Note: Answer FIVE full questions, selecting $\mathbf{O N E}$ full question from each unit.

UNIT - I

1 a. State and explain Kirchhoff's law.
b. State and explain Faraday's laws of electromagnetic induction.
c. A circuit consists of two parallel resistors having resistance of 20Ω and 30Ω respectively connected in series with 15Ω. If current through 15Ω resistor is 3 A . Find the following :
i) Current in 20Ω and 30Ω resistors
ii) The voltage across the whole circuit.
iii) The total power and power consumed in all resistances.

2 a. Define coefficient of coupling and establish the relation between self-inductances, mutual inductances with the coefficient of coupling.
b. A current of 20 A flows through two ammeters A and B in series, the potential difference across A is 0.2 V and across B is 0.3 V . Find how the same current will divide between A and B when they are in parallel.
c. Derive an expression for energy stored in Inductance of ' L ' Henry.

UNIT - II
3 a. Sketch the sinusoidal alternating current wave form and represent as well as define the following terms :
i) Instantaneous value
ii) Peak value
ii) Cycle and frequency
b. A series RLC circuit is composed of 100Ω resistance, 0.1 H Inductance and $5 \mu \mathrm{~F}$ capacitance. A voltage $v(t)=141.1 \cos 377 t \mathrm{~V}$ is applied to the circuit. Determine the current and voltages across the resistance, Inductance and capacitor.
c. Show that the power consumed by a pure inductance is zero and write the waveforms.

4 a. Define RMS value and derive an expression for RMS value of sinusoidally varying alternating current.
b. Derive an expression for average power in an RC series circuit, draw the related wave forms and vector diagram.
c. A coil of power factor 0.6 is in series with a $100 \mu \mathrm{~F}$ capacitor, when connected to a 50 Hz supply, the potential difference across the coil is equal to the potential difference across the capacitor. Find the resistance and inductance of the coil.

UNIT - III

5 a. Obtain a relationship between line voltages and phase voltages in delta (Δ) connected balanced
3- phase system.
b. With a neat sketch, explain the construction and working of induction type single phase energy meter.
c. What is the necessity of earthing? Explain any one type of earthing.

6 a. Show that the two wattmeters are sufficient to measure three phase power.
b. When three balanced impedances are connected in star, across a 3 phase $415 \mathrm{~V}, 50 \mathrm{~Hz}$ supply. The line current drawn is 20 A , at a lagging power factor of 0.4 , Determine the parameter of the impedances in each phase.
c. With neat circuit diagram and switching table, explain three way control of lamp.

UNIT - IV

7 a. With a neat sketch, explain the cross sectional view of DC machine.
b. Obtain an expression for emf of DC generator.
c. Find the load current of a DC shunt generator, if the shunt field resistance and armature resistances are 15Ω and 0.02Ω respectively, when the induced voltage on open circuit is 127 V and the terminal voltage on load is 120 V .
8 a. State and explain Flemings left hand rule
b. Derive an expression for torque developed in a DC motor.
c. A shunt D.C. machine connected to 250 V . Supply has an armature resistance of 0.12Ω and the field resistance of 100Ω. Find ratio of the speed if the machine as a generator to the speed of motor. The line current in each case being 80 A .

UNIT - V

9 a . What is the principle of operation induction motor?
b. Obtain an expression for emf of a transformer from first principles.
c. A 4 pole, 50 Hz Induction motor has a slip of 1% at no load, when operated at full load, the slip is 2.5%. Find the change in speed from no load to full load.

10 a . What are the losses occurs in transformers? How they can minimize?

b. Explain the necessity of starter for 3 phase induction motor.
c. A $10 \mathrm{kVA} \mathrm{a}, 400 / 200 \mathrm{~V}$ single phase transformer has maximum efficiency of 98% at 90% full load at 0.8 pF . Find its efficiency at full load and 0.6 pF .

* * * *

