U.S.N					
0.0.21					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Second Semester, B.E. - Semester End Examination; May / June - 2018 Basic Electrical Engineering

(Common to All Branches)

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

resistance and inductance of the coil.

	UNIT - I	
1 a.	State and explain Kirchhoff's law.	6
b.	State and explain Faraday's laws of electromagnetic induction.	6
c.	A circuit consists of two parallel resistors having resistance of 20 Ω and 30 Ω respectively connected	
	in series with 15 Ω . If current through 15 Ω resistor is 3 A. Find the following :	
	i) Current in 20 Ω and 30 Ω resistors	8
	ii) The voltage across the whole circuit.	
	iii) The total power and power consumed in all resistances.	
2 a.	Define coefficient of coupling and establish the relation between self-inductances, mutual inductances with the coefficient of coupling.	7
b.	A current of 20 A flows through two ammeters A and B in series, the potential difference across A is	
	0.2 V and across B is 0.3 V. Find how the same current will divide between A and B when they are in parallel.	8
c.	Derive an expression for energy stored in Inductance of 'L' Henry.	5
	UNIT - II	
3 a.	Sketch the sinusoidal alternating current wave form and represent as well as define the following	
	terms:	6
	i) Instantaneous value ii) Peak value ii) Cycle and frequency	
b.	A series RLC circuit is composed of 100 Ω resistance, 0.1 H Inductance and 5 μF capacitance. A	
	voltage $v(t) = 141.1\cos 377t$ V is applied to the circuit. Determine the current and voltages across the	8
	resistance, Inductance and capacitor.	
c.	Show that the power consumed by a pure inductance is zero and write the waveforms.	6
1 a.	Define RMS value and derive an expression for RMS value of sinusoidally varying alternating	8
	current.	0
b.	Derive an expression for average power in an RC series circuit, draw the related wave forms and	7
	vector diagram.	,
c.	A coil of power factor 0.6 is in series with a 100 μF capacitor, when connected to a 50 Hz supply, the	
	potential difference across the coil is equal to the potential difference across the capacitor. Find the	5

P17EE25 Page No... 2

UNIT - III

5 a.	Obtain a relationship between line voltages and phase voltages in delta (Δ) connected balanced	6
	3- phase system.	O
b.	With a neat sketch, explain the construction and working of induction type single phase energy meter.	8
c.	What is the necessity of earthing? Explain any one type of earthing.	6
6 a.	Show that the two wattmeters are sufficient to measure three phase power.	6
b.	When three balanced impedances are connected in star, across a 3 phase 415 V, 50 Hz supply. The	
	line current drawn is 20 A, at a lagging power factor of 0.4, Determine the parameter of the	8
	impedances in each phase.	
c.	With neat circuit diagram and switching table, explain three way control of lamp.	6
	UNIT - IV	
7 a.	With a neat sketch, explain the cross sectional view of DC machine.	8
b.	Obtain an expression for emf of DC generator.	6
c.	Find the load current of a DC shunt generator, if the shunt field resistance and armature resistances	
	are 15 Ω and 0.02 Ω respectively, when the induced voltage on open circuit is 127 V and the terminal	6
	voltage on load is 120 V.	
8 a.	State and explain Flemings left hand rule	6
b.	Derive an expression for torque developed in a DC motor.	6
c.	A shunt D.C. machine connected to 250 V. Supply has an armature resistance of 0.12 Ω and the field	
	resistance of 100Ω . Find ratio of the speed if the machine as a generator to the speed of motor. The	8
	line current in each case being 80 A.	
	UNIT - V	
9 a.	What is the principle of operation induction motor?	8
b.	Obtain an expression for emf of a transformer from first principles.	6
c.	c. A 4 pole, 50 Hz Induction motor has a slip of 1% at no load, when operated at full load, the slip i	
2.5%. Find the change in speed from no load to full load.		6
10 a.	What are the losses occurs in transformers? How they can minimize?	6
b.	Explain the necessity of starter for 3 phase induction motor.	6
c.	A 10 kVA a, 400/200 V single phase transformer has maximum efficiency of 98% at 90% full load at	8
0.8pF. Find its efficiency at full load and 0.6 pF.		o