\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Second Semester, Master of Business Administration (MBA)
Semester End Examination; May/June - 2018
Quantitative Techniques
Time: 3 hrs
Max. Marks: 100
Note: i) Answer all FOUR full questions from PART - A and PART - B (Case study) is compulsory.
ii) Scientific calculators are allowed.

PART - A

1 a. Explain the various rules of Probability.
b. Fit a Poisson distribution for the following data:

$x:$	0	1	2	3	4
$f:$	49	35	12	3	1

OR

2 a. Explain the Baye's theorem of conditional probability.
b. The Probability of a new product acceptance in a market is estimated to be 0.7 . A sample of 5 persons is selected. What is the probability that, i) Exactly 3 persons are favoring the product, ii) None favor the product and iii) Atleast 1 favors the product.

3 a. Discuss the scope and applications of Operations Research.
b. Solve the following game:

		Player B			
		I	II	III	IV
	I	3	5	4	2
Player A	II	5	6	2	4
	III	2	1	4	0
	IV	3	3	5	2

4 a . Explain the various types of models in OR.
b. Solve the following game by graphical method:

Player B

		B_{1}	$\mathrm{~B}_{2}$
Player A	A_{1}	-2	4
	$\mathrm{~A}_{2}$	8	3
	$\mathrm{~A}_{3}$	9	0

5 a . Discuss the applications of LPP in management.
b. Solve the following LPP graphically:

Maximize $Z=x_{1}+1.5 x_{2}$

$$
\begin{aligned}
& \text { Subjected to constraints: } \quad 2 x_{1}+2 x_{2} \leq 16 \\
& x_{1}+2 x_{2} \leq 12 \\
& 4 x_{1}+2 x_{2} \leq 28 \\
& x_{1}, x_{2} \geq 0
\end{aligned}
$$

6 a. Explain the general structure of LPP with its components. Also mention the assumptions underlying LPP.
b. Convert the following LPP into its dual form:

Minimize $Z=3 x_{1}+2 x_{2}-3 x_{3}+x_{4}$

$$
\begin{array}{ll}
\text { Subject to constraints: } & x_{1}+x_{2}+x_{3}-x_{4} \geq 7 \\
& 2 x_{1}+5 x_{2}+3 x_{4} \geq 10 \\
& x_{1}+3 x_{3}+x_{4} \geq 11 \\
& x_{1}, x_{2}, x_{3}, x_{4} \geq 0
\end{array}
$$

7 a. Explain the steps involved in Hungarian method of solving assignment model.
b. Find IBFS for the following problem by VAM:

		Destination				
		D_{1}	D_{2}	D_{3}	D_{4}	Supply
	O_{1}	4	3	4	1	100
Origins	O_{2}	5	2	3	2	40
	O_{3}	4	6	2	5	60
Demand		75	50	75	50	
	OR					

8 a. Find IBFS for following problems by, i) NWCR ii) LCM

	P	Q	R	S	Supply
A	6	8	4	3	10
B	7	5	6	3	30
C	9	8	7	4	20
Demand	15	15	15	15	

b. Solve the following assignment problem given that the matrix below is a profit matrix

	B_{1}	$\mathrm{~B}_{2}$	$\mathrm{~B}_{3}$	$\mathrm{~B}_{4}$
$\mathrm{~A}_{1}$	6	1	8	4
$\mathrm{~A}_{2}$	3	2	1	6
$\mathrm{~A}_{3}$	7	5	9	3
$\mathrm{~A}_{4}$	4	7	6	8

PART - B (Case Study)

9. A company has identified the demand pattern for its products in markets with the following details:

Daily Demand	Probability
0	0.01
15	0.15
25	0.2
35	0.5
45	0.12
50	0.02

Consider the following random numbers and run the simulation for 10 days and find the average demand. $21,27,47,54,60,39,43,91,25,20$. Further if the company wants to decide on either to produce 32 units or 29 units per day. Selling price being `60 . The total cost being` 40 . In case there are unsold units, it should be disposed at `5 P.u. In case of unsatisfied demand, it has a penalty cost` 10 P.u. You are required to help the management in deciding how many units to produce taking cost into account.

