P17MCAD21 Page No 1		
	U.S.N	
P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Second Semester, M. Tech - Civil Engineering (MCAD) Semester End Examination; May/June - 2018 Analysis of Plates Time: 3 hrs		
	e: 3 hrs Max. Marks: 100 Max. Marks: 100 Max. Marks: 100	
11010	<i>ii)</i> Assume missing data suitably.	
	UNIT - I	
1 a.	List the assumption made in Kirchhoff's plate theory.	4
b.	Show that in a slightly bent plate, the direction of minimum slope and the direction of maximum slope are at right angles to each other.	8
c.	Show that the sum of curvature in any two mutually perpendicular directions in a slightly bent plate is a constant.	8
2 a.	Derive an expression for deflection in a simply supported circular plate of radius 'a' subjected to concentrated load 'p' at its centre.	8
b.	Show that $\frac{M_{\theta}}{M_r} \cdot \mu$ in case of a circular plate of radius 'a' fixed along the edges and	12
	subjected to uniformly distributed load of intensity ' q '.	
UNIT - II		
3.	Derive the expression for deflection surface, bending moment, twisting moment and shear force for a simply supported rectangular plate with sinusoidal loading given by $\frac{1}{2} m\pi x$	20
	$q = q_0 \sin \frac{m\pi x}{a} \cdot \sin \frac{n\pi y}{b}$	
4 a.	Derive the fourth order differential equation for deflected surface of laterally loaded rectangular plate.	10
b.	Determine the deflection at the centre of simply supported rectangular plate of dimension	
	4 m x 3 m with long side along x-axis and short side along y-axis, the thickness of the plate	-
	is 40 mm and is subjected to uniformly distributed load of 4.16 kN/m ² .	5
	Given $E = 2 \times 10^5 \text{ N/mm}^2$ and $\mu = 0.25$.	
c.	Determine the deflection at the centre of simply supported rectangular plate of dimension	
	4 m x 3 m, the thickness of the plate is 40 mm and is subjected to a wheel load at centre	
	having a magnitude of 50 kN with contact area of dimension 0.12 m x 0.15 m with respect to x and y axis.	5

Given $E=2\,x\,10^5~\text{N/mm}^2$ and $\mu=0.25.$

Contd...2

P17MCAD21

Page No... 2

20

20

UNIT - III

- 5. Using Navier's solutions obtain the expressions for Maximum deflection for an all round simply supported rectangular plate subjected to Hydrostatic load q_o per unit length. 20
- 6. Using Levy's solution, obtain the expression for bending of rectangular plate subjected to symmetric moments distributed along the edges $y = \pm b/2$.

UNIT - IV

- Obtain the solution for uniformly loaded simply supported rectangular plates with large deflection.
- 8. Derive the approximate formula for uniformly loaded circular plate with large deflection. 20

UNIT - V

9. A fixed plate of size 4h x 4h is subjected to uniformly distributed load q_o over its entire surface. Taking grid size as h x h determine;

i) Deflection at the centre of the plate

- ii) Moment at the centre of the plate, take $\mu = 0.3$
- 10. A simply supported plate of size 4h x 4h is subjected to uniformly distributed load q_o over its entire surface. Taking grid size as h x h determine;
 - i) Deflection at the centre of the plate
 - ii) Moment at the the centre of the plate, take $\mu = 0.3$