

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi) Second Semester, M. Tech - Civil Engineering (MCAD) Semester End Examination; May/June - 2018 **Advanced Design of Steel Structure**

Time: 3 hrs Max. Marks: 100

Note: i) Answer *FOUR* full questions, selecting *ONE* full question from each unit.

ii) IS: 800-2007 and IS: 801:1975 is permitted. iii) Assume missing data suitably, if any.

UNIT - I

1 a. Discuss the factor affecting lateral stability of beams.

- 10
- b. Check the adequacy of ISMD450 to carry an udl of 24 kN/m over a span of 6 m. Both ends of the beam are attached to the flanges of columns by double web cleat.

15

2 a. Explain the similarity of column building and lateral buckling of columns.

 $M_{\rm v}$

5

b. Design a laterally unrestrained fixed beam of 6 m span subjected to an udl of 20 kN/m as per IS provisions. Take $f_v = 250$ MPa.

20

UNIT - II

Explain P- Δ and P- \Box effects as applied to long beam columns.

5

A non-sway intermediated column in a building frame with flexible joints is 4 m high and it is ISHB 300 @ 588 N/m steel section. Check the adequacy of the section when the column is subjected to following load:

Factored axial load = 500 kN

Factored moments:

20

 M_z +7.0 kN-m-1.0 kN-m **Bottom**

Top +15 kN-m+0.75 kN-m

Assume effect length of the column as 3.4 m long both the axes. Take $f_v = 250$ MPa and $E = 2 \times 10^5 \text{ MPa}.$

Explain the effect of slenderness ratio and axial force and modes to failure of beam-columns.

5

A beam-column of effective length 3.8 m carries 22 kN-m and 81.25 kN-m moment about minor and major axes respectively. The axial force at the centre of the beam-column is 1035 kN. Determine the adequacy of the ISHB450 @855 N/m for this beam-column as per IS:800 provisions. Take $f_v = 250$ MPa. Apply both section and member checks.

20

UNIT - III

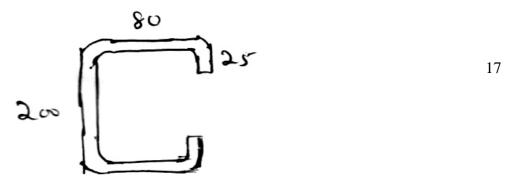
Draw neat sketches of common types of web openings and stiffened and unstiffened opening.

10

b. Describe the guide lines for web holes and various stiffening arrangements.

15

P17MCAD251	Page No 2


6 a. With a neat sketch, explain analysis of beams with perforated thick webs.

b. Explain failure mechanism in plate girder webs with circular openings.

UNIT - IV

7 a. What are the advantages of cold rolled sections over hot rolled sections?

b. Find out the allowable compressive force on the light gauge section 200 x 80 x 25 x 4 m below. Take $f_y = 240$ MPa and internal radius of corners = 1.5t

10

8

7

8 a. With neat sketches, discuss the types of stiffened and unstiffened elements.

b. Design a column of effective length 2.7 m using lipped channel for an axial load of 550 kN, Take $E = 2 \times 10^5$ MPa, $f_y = 240$ MPa.

* * * *