

Note: Answer *FIVE* full questions, selecting *ONE* full question from each unit. UNIT - I

1a. Explain spherical and deviatoric stress. Also, show that deviatoric stress invariants are :

	<i>i</i>) $I_1' = 0$ <i>ii</i>) $I_2' = \frac{I_1^2}{3 + I_2}$ <i>iii</i>) $I_3' = \frac{1}{27} (27I_3 + 2I_1^3 + 9I_1I_2)$	10		
•	The stress tensor at a point is given by $\begin{bmatrix} 50 & 50 & 150 \\ 50 & 100 & 100 \\ 150 & 100 & 150 \end{bmatrix} N / mm^2$	10		
Calculate for the plane having direction cosines $l = \frac{1}{\sqrt{6}}$, $m = \frac{1}{\sqrt{3}}$, $n = \frac{1}{\sqrt{2}}$:				

i) Total stresses ii) Normal stress iii) Shear stress and its direction

2a. Explain briefly :

b.

- ii) Unloading and Reloading in plasticity 12 i) Octahedral stress
- iii) Representative stress iv) Strain rate tensor

b. Obtain the relation between true stress and true strain.

UNIT - II

- 3 a. At a point in a member the state of stress is shown in Fig. 3(a). The tensile elastic limit is 413.7 MPa and shearing stress at a point is 206.85 MPa. At yielding, what is the tensile stress at the point according to :
 - i) Tresca's Criteria ii) Von-Mises Criteria 10

- b. Explain Haigh-Westergaard stress space.
- 4 a. Explain experimental verification of yield criteria by Taylor and Quinney's.
 - b. The state of stress at a point is given by $\sigma_x = 70$ MPa, $\sigma_y = 120$ MPa, $\tau_{xy} = 35$ MPa. If the yield strength for the material 125 MPa, determine whether yielding will occur according to 10 Tresca's and Von-Mises yield conditions or not.

8

10

10

UNIT - III

5 a.	Write $\sigma - \varepsilon$ diagram for the foll	owing materials :				
	i) Rigid perfectly plastic	ii) Rigid strain hardening	iii) Elasto-Perfectly plastic	10		
	iv) Elastoplastic with strain hardening v) Linear elastic					
b.	b. Explain experimental verification of Prandtl-Reuss theory.					
6 a.	5 a. Briefly explain the concept of plastic potential.					
b.	b. Explain Saint Venants theory of plastic flow.					
UNIT - IV						
7 a.	Derive and show the distribution of residual stress in a rectangular beam for the following					
	cases :					
	i) Elasto Plastic yielding			10		
	ii) Fully plastic yielding					
b.	Obtain σ_r , σ_{θ} , σ_z for the plastic flow of a wide strip through a smooth taperd die.					
8 a.	. For an elastic work hardening material derive expression for torque to cause :					
	i) Incipient yielding ii) Elasto plastic yielding			10		
	iii) Fully plastic yielding in torsion of a bar					
b.	. A strip of steel 2 cm wide and 0.5 cm thick is drawn through frictionless dies to the final size					
	of 1.5 cm wide and 0.5 cm thick. If the yield stress for the strip material is 175 N/mm^2 ,					
	determine the stresses in the strip at the exit of the dies and the percentage of reduction based					
	on Von-Mises criteria for plane strain condition.					
UNIT - V						
9 a.	. Explain the properties of slip lines.			10		
b.	Derive Geiringer equations for a slip line.			10		
10 a.	State and prove Heneky's first theorem.			10		
b.	b. Explain any two methods to construct slip-line Nets.					

* * * *