P.E.S. College of Engineering, Mandya - 571401
 (An Autonomous Institution affiliated to VTU, Belagavi)
 Second Semester, M.Tech. - Mechanical Engineering (MMDN) Semester End Examination; May/June - 2018 Metrology and Computer Aided Inspection

Time: 3 hrs
Max. Marks: 100
Note: i) Answer FIVE full questions, selecting ONE full question from each unit.
ii) Assume suitable missing data if any.

UNIT - I

1a. Draw a neat sketch of 'Progressive' type snap gauge and give any four advantages and disadvantages of this type of gauging.
b. Determine the tolerances on the hole and the shaft for a precision running fit designated by $50 \mathrm{H} 7 / \mathrm{g} 6$. You may use the following aid for solving the problem or use IS: 919 for convenience. 50 mm lies between the range $30-50 \mathrm{~mm}, i=0.46$ (D) $)^{1 / 3}+0.001$ (D) (microns), Fundamental deviation for H hole $=0$, Fundamental deviation of g shaft $=-2.5 \mathrm{D}^{0.34}$. State the actual maximum and minimum sizes of the both hole and shaft and maximum and minimum clearances.
c. Write a brief note on the 'selective assembly' of machined parts.

2a. Discuss the following types of fits and how they can be achieved :
i) Selective fit
ii) Push fit
iii) Driving fit
iv) Shrinkage fit
b. Calculate the dimensions of plug and ring gauges to control the production of 50 mm shaft and hole pair of $\mathrm{H}_{7} \mathrm{~d}_{8}$ as per IS specification. The following assumptions may be made :
50 mm lies in diameter step of 30 and 50 mm and the upper deviation for ' d ' shaft is given by $-16 \mathrm{D}^{0.44}$ and lower deviation for the hole H is zero.
Tolerance unit i (microns) $=0.45 \sqrt[3]{D}+0.001 D$ and IT6 $=10$ i and above IT6 grade the tolerance magnitude is multiplied by 10 at each fifth step.
c. Describe the various types of errors on screw threads and explain the reasons for the same.

UNIT - II

3 a . With a neat sketch, explain straightness test by using spirit level and autocollimator.
b. Describe the four reference circles used in measurement of roundness.
c. Explain the following surface roughness parameters :
i) R_{a}
ii) R_{t}

4 a . With a neat sketch, discuss the squareness testing by indicator method.
b. With a neat sketch, explain the construction and working principle of Tomlinson surface meter and state its advantages.

UNIT - III

5 a. Explain the following alignment tests performed on pillar type drilling machine with a simple sketch :
i) Flatness of clamping surface of base
ii) Perpendicularity of drill head guide with table
iii) Squareness of clamping surface of table to its axis
b. Discuss any two types of contact and non-contact probes used in CMM.
6 a. Name the various alignment tests to be performed on a lathe. Describe any three of them in
detail.
b. Distinguish between the following :
i) Alignment test and performance test of a machine tool 8
ii) Geometric and practical tests on a machine tool

UNIT - IV

7 a. Give a brief description of components involved in laser interferometer.
b. Explain the following with respect machine vision :
i) Normalization
ii) Gray scale color relation
iii) Template techniques

8 a. Explain the following with sketches :
i) Laser triangulation sensors
ii) Gauging wide diameter from the diffraction pattern formed in a laser
iii) Two-frequency laser interferometer
b. Discuss the various stages involved in the operation of a machine vision system. 8

UNIT - V

9 a. Discuss the Zeiss slip gauge interferometer in checking of slip gauges.
b. List out the sources of uncertainty in measurements.

10 a . Explain the measurement of following limit gauges with suitable sketches:
i) Parallel screw plug gauges
ii) Parallel screw ring gauges
b. Briefly explain the length measurement uncertainty of CMM.

