P17PH22 Page		e No	1		
CO1: 1 CO2: 1	P.E.S. College of Engineering, Mandya - 571 (An Autonomous Institution affiliated to VTU, Belagavi) Second Semester, B.E Semester End Examination; May/Ju Engineering Physics (Common to all Branches) Time: 3 hrs Mathematical Concepts and principles of Physics in describing the phenomena related to e Explain the properties of various materials like metals, dielectrics, semiconductors, superconduct applicable to engineering field.	ne - 20 x. Mar	ks: 1		
CO3: A CO4: 1	Applicable to engineering field. Apply the knowledge of Physics allied with the field of engineering applications. Formulate the expressions for the concepts of Physics pertaining to engineering field. Analyze by solving the problems in Physics for better understanding of engineering concepts.				
Note:	Answer <u>FIVE</u> full questions, selecting <u>ONE</u> full question from each Unit				
P hysical o Boltzmann	constants: Electron mass, $m = 9.11 \times 10^{-31}$ kg, Electron charge, $e = 1.602 \times 10^{-19}$ C; Velocity of light, $c = 3 \times 10^8$ ms ⁻¹ ; Pla n constant, $K = 1.38 \times 10^{-23}$ JK ⁻¹ ; Avogadro number, $N = 6.025 \times 10^{-23}$ /mole; Permittivity of free space, $\varepsilon_o = 8.85 \times 10^{-12}$ Fm ⁻¹ .	nck's const	ant, h =	6.626x1	0 ⁻³⁴ Js;
). No.	Questions	Marks	CO	BL	PO
	UNIT - I				
1 a.	i) Define the three modulli of elasticity.	2	CO1	L1	
	ii) Explain the Poisson's ratio must lies between -1 and 0.5 using the relation between three modulli of elasticity.	6	CO2	L2	PO1
b.	i) Define Piezoelectricity and Ferroelectricity.	3	CO1	T 1	PO1
	ii) Mention the applications of dielectric materials.	4	CO3	L1	FUI
c.	i) What is bending of beam?	5	CO1	L1	PO1
	ii) Explain I-shaped girders.	5	CO2	L2	
2 a.	i) Define Dielectric loss.	2	CO1	L1	PO1
	ii) Derive Clausius-Mossotti equation for a dielectric material.	6	CO4	L3	101
b.	Derive an expression for Yong's modulus (q) by uniform bending method.	7	CO4	L3	PO1
c.	The dielectric constant of sulphur is 3.4, assuming the internal field as Lorentz field; calculate the electronic polarizability of sulphur. Give that density of sulphur = 2.07×10^3 kg/m ³ and atomic weight = 32.07 .	5	CO5	L3	PO2
	UNIT - II				
3 a.	How black body radiation spectrum can be explained using Planck's law, Wien's law and Rayleigh-Jeans law.	8	CO1	L1	PO1
b.	i) What is wave function?	7	CO1	L1	PO1
	ii) Explain the physical significance of a wave function.		CO2	L2	
c.	Compare the de-Broglie wavelength of a 2000 kg automobile travelling at a speed of	5	CO5	L2	PO2

50 m/s and 0.2 kg bullet travelling at a speed of 250 m/s.

i) Mention the characteristics properties of matter wave.

an infinite potential well.

Solve Schrodinger's wave equation for allowed energy values in case of a particle in

An electron is bound in one dimensional potential box of width $4x10^{-10}$ m. compute

ii) Obtain the relation between group velocity, phase velocity and velocity of light.

the energy and de-Broglie wavelengths in ground state and first excited state.

(

4 a.

b.

c.

CO4

CO1

CO3

CO5

L3

L1

L3

L3

PO1

PO1

PO2

8

2

5

5

	UNIT - III								
5 a.	Derive an expression for the hole concentration in an intrinsic semiconductors.	8	CO4	L3	PO1				
b.	Explain the variation of Fermi energy with temperature at $T = 0$ K and $T > 0$ K.	7	CO2	L2	PO1				
с.	Show that, $E_F = \left(\frac{E_C + E_V}{2}\right) - \frac{3}{4}kT \ln\left(\frac{m_e^*}{m_h^*}\right).$	5	CO3	L3	PO1				
6 a.	i) Define density of states.	1	CO1	L1					
	ii) Derive an expression for the density of states for conduction electrons for unit volume of metal.	7	CO4	L3	PO1				
b.	Explain the significance of Fermi level in intrinsic and extrinsic semiconductors.	7	CO2	L2	PO1				
c.	Calculate the probability of an electron occupying an energy level of 0.05 eV at 500 K above and below the Fermi level.	5	CO5	L3	PO2				
UNIT - IV									
7 a.	i) What are superconductors?	2	CO1	L1					
	ii) Write a note on temperature dependence of resistivity and critical magnetic field in a superconductor.	6	CO1	L2	PO1				
b.	Write a brief note on Carbon nanotubes and their types with some important properties.	7	CO1	L2	PO1				
с.	i) Define Isotopic effect.	5	CO1	L1	PO1				
	ii) In a superconducting material Isotopic mass is 199.5 amu and critical temperature is 5 K. Calculate isotopic mass at 5.2 K.		CO5	L3	PO2				
8 a.	Explain the confinement of electron energy states in 0D, 1D, 2D and 3D system.	8	CO2	L2	PO1				
b.	Explain Meissner's effect and Type – II superconductor.	7	CO2	L2	PO1				
с.	Discuss briefly on Scanning Tunneling Microscope (STM).	5	CO2	L2	PO1				
UNIT - V									
9 a.	i) Define metastable state.	2	CO1	L1	PO1				
	ii) Write a note on population inversion.	3	CO1	L2					
b.	i) Define angle of acceptance and numerical aperture.	2	CO1	L1	PO1				
	ii) With a neat diagram, explain step index multimode optical fiber.	3	CO2	L2					
с.	i) What is meant by non-destructive method of testing the materials?	2	CO1	L1	PO1				
	ii) An ultra sound pulse sent by a source in sea is reflected by a submerged target at a distance 597.5 m and reaches the sources after 0.83 s. Find the velocity of sound in sea water.	3	CO5	L3	PO2				
d.	Discuss the various factors affecting the acoustics of an auditorium.	5	CO2	L2	PO1				
10 a.	A pulse from laser with power 1 mW last for 9 ns . If the number of photons emitted per second is 3.41×10^7 , calculate the wavelength of laser.	5	CO5	L3	PO1				
b.	Calculate the numerical aperture and angle of acceptance of a given optical fiber, if the refractive index of core and cladding are 1.55 and 1.50 respectively.	5	CO5	L3	PO2				
с.	Write a brief note on applications of ultrasonic waves in different fields.	5	CO3	L2	PO1				
d.	What are the basic requirements of a good acoustics?	5	CO1	L1	PO1				