

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Fourth Semester, B.E. - Civil Engineering
Semester End Examination; May/June - 2019 Hydraulics and Hydraulic Machines
Time: 3 hrs
Note: i) Answer FIVE full questions, selecting ONE full question from each unit.
ii) Assume missing data suitably.

UNIT - I

1 a . What do you mean by open channel flow? Give the classifications of open channels with examples.
b. Derive the conditions for hydraulic efficient trapezoidal channel section and show that hydraulic radius is half the depth of flow.
c. A rectangular channel 4 m wide has a depth of water 1.5 m . The slope of channel is 1 in 1000 and valve of $\mathrm{C}=55$. It is desired to increase the discharge to a maximum by changing the dimensions of section for constant area of cross section, slope and roughness of the channel. Find the new dimensions of the channel and increase in discharge.

2 a. Distinguish between; i) Uniform flow and Non-uniform flow
ii) Subcritical flow and Super critical flow
iii) Alternate depth and Conjugate depth
b. Define hydraulic jump. Derive the expressions for depth of hydraulic jump in terms of upstream Froude's number.
c. Water flows at $12.5 \mathrm{~m}^{3} / \mathrm{s}$ in a channel of 2 m wide at a velocity of $1.2 \mathrm{~m} / \mathrm{s}$. Calculate specific energy head. Find also the critical depth, critical velocity and value of minimum specific energy.

UNIT - II

3 a. Define dimensional homogeneity. List uses of dimensional analysis.
b. State and explain Buckingham π theorem of dimensional analysis. Highlighting the repeating variables.
c. Find an expression for the drag force on a smooth sphere of diameter d moving with uniform velocity V in a fluid of density ρ and dynamic viscosity μ by Rayleigh's method.
4 a . What do you mean by model analysis? Give the advantages of model analysis.
b. Distinguish between;
i) Geometric similarity and Kinematic similarity
ii) Undistorted model and Distorted model
iii) Reynold's number and Froude's number
c. In a $1: 40$ model of a spillway the velocity and discharge are $2 \mathrm{~m} / \mathrm{s}$ and $2.5 \mathrm{~m}^{3} / \mathrm{s}$. Find the corresponding velocity and discharge in the prototype. If the energy dissipated in the model is $1 / 10 \mathrm{~kW}$, what is the corresponding value in the prototype?

UNIT - III

5 a . State the impulse momentum principle and hence obtain an expression for the force exerted by a jet water on a fixed vertical plate.
b. Show that the efficiency of jet striking on a series of curved values mounted in the periphery of wheel is 100%.
c. A jet having a diameter 75 mm with a velocity of $30 \mathrm{~m} / \mathrm{s}$ strikes a flat plate held normal to the direction of jet. Estimate the force exerted and work done by the jet. If,
i) The plate is stationary
ii) The plate is moving with velocity of $15 \mathrm{~m} / \mathrm{s}$ away from the jet in the same direction

6 a. Prove that curved vanes are hydraulically efficient than flat vanes.
b. Show that efficiency of a jet striking normally on a series of flat plates mounted on the periphery of a rotating wheel never exceeds 50%.
c. A jet of water diameter 100 mm strikes a curved vane at its centre with a velocity of $15 \mathrm{~m} / \mathrm{s}$. The curved vane is moving with a velocity of $7 \mathrm{~m} / \mathrm{s}$ in the direction of the jet. The jet is deflected through an angle of 150°. Assume vane to be smooth. Evaluate;
i) Force exerted on the vane in the direction of jet
ii) Power of the jet
iii) Efficiency

UNIT - IV

7 a. Define hydraulic turbine. Give the classifications of turbines with example.
b. With a neat sketch, explain the various components of a Pelton wheel turbine.
c. Design a pelton wheel turbine for a head of 80 m runs at 300 rpm develops 110 kW power. Take; $\mathrm{C}_{\mathrm{v}}=0.98, \mathrm{~K}_{\mathrm{u}}=0.48$ and overall efficiency $=80 \%$.
8 a. With a neat sketch, explain the various components of a Francis turbine.
b. Bring out the differences between Francis and Kaplan turbine.
c. A Kaplan turbine develops 58800 kW under a head of 25 m with an overall efficiency of 90%. Take; K_{u} as 1.6 and $\psi=0.5$ and hub diameter as 0.35 times the outer diameter, find the diameter and speed of the turbine.

UNIT - V

9 a . What is a draft tube? Why it is employed? Describe different types of draft tubes with neat sketches.
b. Define specific speed. Derive the expression for the same state its significance.
c. A turbine develops 10000 kW under a head of 20 m at 150 rpm . What is the specific speed? What type of the turbine? What would be its normal speed and output under a head of 25 m ?
10 a . With neat sketches, explain the working of a centrifugal pump.
b. Obtain an expression for minimum starting speed of a centrifugal pump.
c. A centrifugal pump runs at 1000 rpm delivers water against a head of 15 m . The impller diameter and width at outlet are 0.3 m and 0.05 m respectively. Vanes are curred back at angle of 30° with periphery at outlet. Find the discharge. Take; $\eta_{\text {mano }}=0.92$.

