

P13CV45

UNIT - III

5 a.	State the impulse momentum principle and hence obtain an expression for the force exerted by a	6
	jet water on a fixed vertical plate.	0
b.	Show that the efficiency of jet striking on a series of curved values mounted in the periphery of	8
	wheel is 100%.	
c.	A jet having a diameter 75 mm with a velocity of 30 m/s strikes a flat plate held normal to the	
	direction of jet. Estimate the force exerted and work done by the jet. If,	6
	i) The plate is stationary	
	ii) The plate is moving with velocity of 15 m/s away from the jet in the same direction	
6 a.	Prove that curved vanes are hydraulically efficient than flat vanes.	6
b.	Show that efficiency of a jet striking normally on a series of flat plates mounted on the periphery	8
	of a rotating wheel never exceeds 50%.	
c.	A jet of water diameter 100 mm strikes a curved vane at its centre with a velocity of 15 m/s. The	
	curved vane is moving with a velocity of 7 m/s in the direction of the jet. The jet is deflected	6
	through an angle of 150°. Assume vane to be smooth. Evaluate;	
	i) Force exerted on the vane in the direction of jet ii) Power of the jet iii) Efficiency	
	UNIT - IV	
7 a.	Define hydraulic turbine. Give the classifications of turbines with example.	6
b.	With a neat sketch, explain the various components of a Pelton wheel turbine.	6
c.	Design a pelton wheel turbine for a head of 80 m runs at 300 rpm develops 110 kW power.	8
	Take; $C_v = 0.98$, $K_u = 0.48$ and overall efficiency = 80%.	
8 a.	With a neat sketch, explain the various components of a Francis turbine.	8
b.	Bring out the differences between Francis and Kaplan turbine.	6
c.	A Kaplan turbine develops 58800 kW under a head of 25 m with an overall efficiency of 90%.	
	Take; K_u as 1.6 and $\psi = 0.5$ and hub diameter as 0.35 times the outer diameter, find the diameter	6
	and speed of the turbine.	
	UNIT - V	
9 a.	What is a draft tube? Why it is employed? Describe different types of draft tubes with	8
	neat sketches.	
b.	Define specific speed. Derive the expression for the same state its significance.	6
c.	A turbine develops 10000 kW under a head of 20 m at 150 rpm. What is the specific speed? What	6
	type of the turbine? What would be its normal speed and output under a head of 25 m?	-
10 a.	With neat sketches, explain the working of a centrifugal pump.	8
b.	Obtain an expression for minimum starting speed of a centrifugal pump.	6
c.	A centrifugal pump runs at 1000 rpm delivers water against a head of 15 m. The impller diameter	
	and width at outlet are 0.3 m and 0.05 m respectively. Vanes are curred back at angle of 30° with	6
	periphery at outlet. Find the discharge. Take; $\eta_{mano} = 0.92$.	

* * * *