

c. Develop the equation for self inductance of coaxial cable.

6

	P13EC46 Page No 2	
6 a.	Write Maxwell's equation both in integral form and differential form for harmonically varying fields.	8
b.	Discuss the concept of displacement current density.	6
c.	In a region, if $\vec{A} = 10^{-3} y \cos 3 \times 10^8 t \cos Z \hat{a}_z$ Wb/m,	6
	$\epsilon_r = \mu_r = 1$, $\sigma = 0$ and $V = 3 \times 10^5 \text{y} \sin 3 \times 10^8 \text{t} \sin z$ volt. Compute \vec{E}	
	UNIT - IV	
7 a.	State and prove Poynting's theorem starting from Maxwell's equation.	8
b.	Discuss the wave propagation in good conductors with related equations.	6
c.	\vec{E} wave travelling in free space is incident normally on the interface with a perfect dielectric with	6
	$\epsilon_r = 3$. Calculate the transmission coefficient and reflection coefficient.	
8 a.	Calculate the maximum effective aperture and directivity of short dipole antenna.	6
b.	Derive equation for effective aperture in terms of effective height of an antenna.	6
с.	Discuss the following with respect to antenna :	
	i) Antenna field Zones ii) Radiation pattern and beam width	8
UNIT - V		
9 a.	Discuss tilt of wave front due to ground losses.	5
b.	Explain Electrostatic field and Induction field of alternating current element.	10
с.	Explain Earths behaviour at different frequencies .	5
10 a.	Discuss the mechanism of wave reflection from ionosphere.	6
b.	Define the term skip distance and maximum usable frequecy. If the wave is reflected from a	
	hieght of 300 km, N_{max} is 23.45×10 ¹⁰ and MUF is 10 MHz, calculate the skip distance for	8
	flat earth.	

c. Discuss the effect of curved nature of earth.

* * * *

6