


## UNIT - I

- 1 a. What are the different physical boundary conditions used in the analysis of conduction problems. Explain them with suitable examples.
- b. Derive an expression for one dimensional steady state temperature distribution in a slab of thickness 'L' with no heat generation, when the boundary surface at x = 0 is kept at a uniform temperature ' $T_0$ ' and at x = L dissipates heat by convection with a heat transfer coefficient 'h' into the ambient air at temperature  $T_{\infty}$ . Assume constant thermal conductivity.
- c. Write the mathematical formulation of one dimensional steady state heat conduction for a hollow sphere with constant thermal conductivity in the region  $a \le r \le b$ , when heat is supplied to the sphere at the rate of  $q_0 w/m^2$  from the boundary surface at r = a and dissipates heat by convection from the boundary surface at r = b into the medium at zero temperature with a heat transfer coefficient *h*.
- 2 a. Obtain the expression for the critical radius of insulation for the heat transfer through a sphere in terms of thermal conductivity 'k' and heat transfer co-efficient 'h'.
  - b. A 3 cm diameter pipe at 120°C is loosing heat by convection at rate of 120 W per meter length. The surrounding temperature is 30°C. It is required to reduce the heat loss to a minimum value by providing insulation. The following insulating materials are available : Insulation 1: Quantity =  $3.15 \times 10^{-3}$ m<sup>3</sup> per meter length pipe with K<sub>1</sub> = 5 W/mK Insulation 2: Quantity =  $4 \times 10^{-3}$  m<sup>3</sup> per meter length pipe with K<sub>2</sub> = 1 W/mK Examine the better insulating layer relative to pipe and determine the percentage change in heat transfer from the arrangement.

### UNIT - II

3 a. Develop an expression for the steady state temperature distribution in slab of thickness *L*, when the boundary surface at x = 0 is kept insulated and boundary surface at x = L is kept at zero temperature. The thermal conductivity of wall '*K*' is constant and within the wall energy is generated at the rate of  $g(x) = g_0 x^2 W/m^3$ . 10

12

# P15ME63 Page No... 2 b. A plane wall of thickness 0.1 m and thermal conductivity 25 W/mK having uniform volumetric heat generation of 0.3 mW/m<sup>3</sup> is insulated on one side, while other side is exposed to fluid at 92°C. The convection heat transfer coefficient between plane wall and fluid is 500 W/m<sup>2</sup>K.

Determine the maximum temperature and location of maximum temperature.

- 4 a. Derive the expression for the temperature distribution in a body at time 't' during Newtonian heating or cooling as a function of B and  $F_0$ .
  - b. In a quenching process, a copper plate 3 mm thick is heated upto 400°C and then exposed to an ambient at 25°C with the convection coefficient of 28 W/m<sup>2</sup>K. Calculate the time required for the plate to reach the temperature of 50°C.

Take thermo physical properties as C = 380 J/kg-K,  $\rho$  = 8800 kg/m<sup>3</sup>, k = 385 W/mK.

- c. A 50 mm thick iron plate is initially at 225°C. Its both surfaces are suddenly exposed to an environment at 25°C with convection coefficient of 500 W/m<sup>2</sup>K. Calculate;
  - i) The centre temperature 2 minute after the start of exposure
  - ii) The temperature at the depth of 10mm from the surface after 2 minute of exposure
  - iii) The energy removed from the plate per square meter during this period. Take, K = 60 W/mK,  $\rho = 7850 \text{ kg/m}^3$ , C = 460 J/kgK,  $\alpha = 1.6 \times 10^{-5} \text{ m}^2/\text{s}$

# UNIT - III

5 a. With the usual notation, prove that;

$$St_m \cdot \mathbf{P}_{\mathbf{r}}^{2/3} = \frac{C_m}{2}$$

- b. Atmospheric air at  $T_{\infty} = 400$  k with a velocity  $u_{\infty} = 1.5$  m/s flows over a flat plate L = 2 m long maintained at a uniform temperature  $T_w = 300$  K. Calculate the average heat transfer coefficient from x = 0 to x = L = 2 m. Calculate the heat transfer rate from air stream to the plate from x = 0 to x = L = 2 m for w = 0.5 m Take  $v = 0.21 \times 10^{-4}$  m<sup>2</sup>/s, K = 0.03 W/mK, P<sub>r</sub> = 0.697 at mean temperature.
- c. Air at a temperature of 60°C and a pressure of 1 atm flow over a flat plate at 125 m/s. The plate is at 100°C and 1.5 m long. Calculate;
  - i) Hydrodynamic boundary layer thickness at the end of the plate
  - ii) The local skin friction coefficient at the end of the plate
  - iii) The average skin friction coefficient
  - iv) Drag force per meter width of the plate
  - v) The local heat transfer coefficient and average heat transfer coefficient
  - vi) The heat transfer from the plate
- 6 a. Using Dimensional analysis prove that  $N_u = f(G_r, P_r)$

4

10

10

4

10

10

|           | P15ME63 Page No 3                                                                                                       |    |
|-----------|-------------------------------------------------------------------------------------------------------------------------|----|
| b.        | Vertical door of a hot oven is 0.5 m high and is maintained at 200°C. It is exposed to                                  |    |
|           | atmospheric air. Find;                                                                                                  | 10 |
|           | i) Local heat transfer half way up the door ii) Average heat transfer coefficient for entire door                       | 10 |
|           | iii) Thickness of free convection boundary layer at the top of the door.                                                |    |
| UNIT - IV |                                                                                                                         |    |
| 7 a.      | State Wien's Displacement law. Show that $E_{b\lambda}$ will be maximum when $\lambda_{max} T = 2900 \ \mu\text{m-K}$ . | 8  |
| b.        | Prove that the total emissive power of a black body $E_b = \sigma T^4$ .                                                | 6  |
| c.        | The temperature of a filament of an incandescent light bulb (a black body) is maintained at                             |    |
|           | 2500 k. Calculate the fraction of radiant energy emitted by the filament in the visible spectrum                        | r. |
|           | (from 0.4 $\mu$ m to 0.76 $\mu$ m). Also calculate the wave length at which the emission from the                       | 6  |
|           | filament reaches a maximum value.                                                                                       |    |
| 8 a.      | For the radiation heat exchange between two large parallel gray plates prove that the view factor                       |    |
|           | $F_{1-2} = \frac{1}{\frac{1}{\varepsilon_1} + \frac{1}{\varepsilon_2} - 1}$                                             | 10 |
| b.        | Emissivities of two large parallel plates maintained at 800°C and 300°C are 0.3 and 0.5                                 |    |
|           | respectively. Find;                                                                                                     |    |
|           | i) Net radiant heat exchange per square meter of the plate                                                              | 10 |
|           | ii) The percentage reduction in heat transfer, when a polished aluminum radiation shield                                | 10 |
|           | $(\varepsilon = 0.05)$ is placed between them                                                                           |    |
|           | iii) The temperature of the shield                                                                                      |    |
| UNIT - V  |                                                                                                                         |    |
| 9 a.      | Derive an expression for the LMTD of a counter flow heat exchanger.                                                     | 10 |
| b.        | A counter flow heat exchanger is used to heat water from 20°C to 80°C at a rate of 1.2 kg/s. The                        |    |

- b. A counter flow heat exchanger is used to heat water from 20°C to 80°C at a rate of 1.2 kg/s. The heating is obtained by using geothermal water available to 160°C at a mass flow rate of 2 kg/s. The inner tube is thin walled, and has a diameter of 1.5 cm. If the overall heat transfers coefficient is 640 W/m<sup>2</sup>K. Calculate the length of the heat exchanger required to achieve the desired heating by using effectiveness NTU method. Take specific heat of geo thermal water as 4.31 kJ/kg-K and that of ground water as 4.18 kJ/kg-K.
- 10 a. Explain Fick's law of diffusion.
  - b. For a laminar film wise condensation on a vertical plate prove that the local heat transfer coefficient

$$h_{x} = \left[\frac{g\rho_{1}(\rho_{L} - \rho_{V})k_{L}^{3}hfg}{4\mu(T_{sat} - T_{s})x}\right]^{\frac{1}{4}}$$
10

6

### P15ME63

# Page No... 4

4

c. Dry saturated steam at a pressure of 2.45 bar condenses on the surface of a vertical tube if height 1m. The tube surface temperature is kept at 117°C. Estimate the thickness of the condensate film and the local heat transfer coefficient at a distance of 0.2 m from the upper end of the tube. The properties of water at 2.45 bar are :

 $\begin{array}{ll} \mbox{Saturated vapour $T_{sat}$ = $127^{\circ}$C$ $\rho_v$ = $1.368$ kg/m^3$ $h_{fg}$ = $2183$ kJ/kg$ \\ \mbox{Saturated water; $T_f$ = $(117+127)/2$ = $122^{\circ}$C$ $\rho_L$ = $941.6$ kg/m^3$ $\mu_L$ = $227{\times}10^6$ N-s/m^2$ $k_L$ = $687 \times 10^{-3}$ W/mK$ } \end{array}$ 

\* \* \* \*