U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Second Semester, B.E. - Semester End Examination; May/June - 2019 Engineering Mathematics - II

(Common to All Branches)

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

1 a. Find for what value of k the system of equation possesses a solution, x+y+z=1, x+2y+4z=k, $x+4y+10z=k^2$. Solve completely in each case.

6

7

b. Solve LU decomposition method to solve the system of equations,

2x + y + 4z = 12, 4x + 11y - z = 33, 8x - 3y + 2z = 20.

c. Find all the Eigen values and the Eigen vector corresponding largest Eigen value of the

matrix
$$A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$$

7

2 a. Solve the following system of equations by Gauss Jordan method,

x + y + z = 9, x - 2y + 3z = 8, 2x + y - z = 3.

6

7

b. Diagonalize the matrix $\begin{bmatrix} -1 & 3 \\ -2 & 4 \end{bmatrix}$.

7

c. Reduce the following quadratic form into canonical form by orthogonal transformation,

 $8x^2 + 7y^2 + 3z^2 - 12xy + 4xz - 8yz$.

UNIT - II

3 a. Solve: $(D^3 + 6D^2 + 11D + 6)y = 0$.

6

b. Solve: $(D^2 - 2D + 5) y = e^{2x} \sin x$.

7

c. Solve: $y'' + a^2y = \sec ax$ by the method of variation of parameters.

6

7

4 a. Solve: $y'' + 2y' + y = 2x + x^2$.

c.

7

7

b. Solve: $y'' + 3y' + 2y = 12x^2$ by the method of undetermined coefficients.

Solve: $(2x+1)^2 y'' - 6(2x+1) y' + 16y = 8(2x+1)^2$.

UNIT - III

5 a. Find the Laplace transform of, i) $t \cosh t$

ii) $\frac{\sin at}{t}$

6

b. Given $f(t) = \begin{cases} E, & 0 < t < \frac{a}{2} \\ -E, & \frac{a}{2} < t < a \end{cases}$

7

Where f(t+a) = f(t) show that $L \lceil f(t) \rceil = \frac{E}{S} \tanh(\frac{as}{4})$.

6

7

6

7

c. Express the following in-terms of unit step function and hence find its Laplace transform,

$$f(t) = \begin{cases} \cos t, & 0 < t \le \pi \\ 1, & \pi < t \le 2\pi \\ \sin t, & t > 2\pi \end{cases}$$

- 6 a. Find the inverse Laplace transform of, i) $\frac{s+5}{s^2-6s+13}$ ii) $\cot^{-1}\left(\frac{s}{a}\right)$.
 - b. Find inverse Laplace transform of $\frac{s+2}{\left(s^2+4s+5\right)^2}$ using Convolution theorem.
- c. Solve: $x'' 2x' + x = e^{2t}$ with x(0) = 0, x'(0) = -1 by using Laplace transform method.

UNIT - IV

7 a. If
$$u = \sqrt{x_1 x_2}$$
, $v = \sqrt{x_2 x_3}$, $w = \sqrt{x_3 x_1}$ find $J(u, v, w) \over (x_1, x_2, x_3)$.

- b. Expand: $xy^2 + x^2y$ in powers of (x-1) and (y+3) upto second degree terms.
- c. Find the minimum value of $x^2 + y^2 + z^2$ subject to the condition ax + by + cz = P.
- 8 a. If $\vec{F} = (3x^2 + 6y)i 14yzj + 20xz^2k$, evaluate $\int \vec{F} \cdot d\vec{r}$ from (0, 0, 0) to (1, 1, 1) along the curve given by x = t, $y = t^2$, $z = t^3$.
 - b. Employ Green's theorem in a plane to show that the area enclosed by a plane curve c is $\frac{1}{2} \oint x dy y dx$ and hence find the area of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$.
 - C. Verify Stoke's theorem for $\vec{F} = (x^2 + y^2)i 2xyj$ taken around the rectangle bounded by x = 0, x = a, y = 0, y = b.

UNIT - V

- 9 a. Evaluate: $\int_{-c}^{c} \int_{-a}^{b} \int_{-a}^{a} (x^2 + y^2 + z^2) dz dy dx$.
 - b. Evaluate: $\iint xy(x+y) \, dy dx$ take over the area between $y=x^2$ and y=x.
 - c. Evaluate: $\int_{-2}^{2} \int_{0}^{\sqrt{4-x^2}} (2-x) dy dx$ by changing the order of integration.
- 10 a. Find the area enclosed by the curve $r = a(1 + \cos \theta)$ between $\theta = 0$ and $\theta = \pi$ by double integration.
 - b. Find the volume of tetrahedron bounded by the planes,

$$x = 0, y = 0, z = 0,$$
 $x_a' + y_b' + z_c' = 1.$

c. Express the integral in-terms of beta function and hence evaluate $\int_{0}^{2} \frac{x^{2}}{\sqrt{2-x}} dx$.