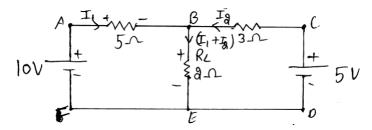
TT 0 TT					
U.S.N					
0.2.2.					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Second Semester, B.E. - Semester End Examination; May / June - 2019 Basic Electrical Engineering


(Common to All Branches)

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

- 1 a. State and explain the Kirchhoff's law.
 - b. Derive an expression for Self induced *emf*.
 - c. Find the current through R_L for the network shown in below figure,

- 2 a. Define Self and Mutual induced *emf* and derive an expression for coefficient of coupling.
 - b. State and explain the Faraday's law of electromagnetic induction.
 - c. Two identical coils of 1200 turns each are placed side by side such that 60% of the flux produced by one coils links other. A current of 10 A in the first coil sets up a flux of 0.12 m Wb. If the current in the first coil changes from +10 to −10 A in 20 ms. Find;
 - i) The self-inductances of the coils
- ii) The *emf* 's induced in both the coils

UNIT - II

- 3 a. Define the following terms:
 - i) Real power ii) Reactive Power
- iii) Apparent power
- iv) Power factor
- b. Derive an expression for the average power consumed in a series RC circuit. Draw the related waveform.
- c. A coil having a resistance of 7 Ω is connected in series with an inductance of 31.8 mH to a source of 230 V, 50 Hz supply. Calculate;
 - i) The circuit current
- ii) Voltage across each element
- iii) Phase angle

- iv) Power factor
- v) Power consumed
- vi) Phasor diagram

- 4 a. Define the following terms:
 - i) RMS value
- ii) Average value
- iii) Form factor
- iv) Peak Factor
- Show that the current in pure capacitor leads the voltage by 90°.
- c. A resistance of 20 Ω and inductance of 0.2 H and capacitance of 100 μ f are connected in series across 220 V, 50 Hz supply. Calculate; i) Impedance ii) Current iii) Voltage across each element
 - iv) Power absorbed
- v) Power factor

6

6

8

8

6

6

6

8

6

6

8

UNIT - III

5 a.	Develop the relation between line and phase values for 3-φ balanced star connected system.	8					
b.	Three similar coils each having resistance of 20 Ω and an inductive reactance of 15 Ω are						
	connected in delta to a 440 V three phase 50 Hz supply. Determine;	6					
	i) The line current ii) Power factor iii) Power supplied						
c.	Mention the preventive measure should be taken against electric shock, and list out the characteristics of Fuses.	6					
6 a.	What is the necessity of Earthing? With a neat sketch explain Plate earthing.	6					
b.	With a neat sketch, explain the construction and working of a single phase induction type	_					
	energy meter.	7					
c.	With the help of a circuit diagram and switching table, explain 2-way and 3-way	7					
	control of lamps.	7					
	UNIT - IV						
7 a.	With a neat sketch, explain the construction of a DC machine and function of each part.	8					
b.	. Derive an expression for the torque developed by a DC motor.						
c.	An 8-pole DC has 500 armature conductors and a useful flux of 0.05 Wb per pole. What will be						
	the emf generated, if it is lap-connected and runs at 1200 rpm? What must be the speed at which						
	it is to be driven to produce the same emf, if it is wave-wound?						
8 a.	What is Back emf? Explain its significance.	6					
b.	b. With usual notation, derive an <i>emf</i> equation of a synchronous generator.						
c.	Find the phase and line voltage of a star-connected 3-phase, 6-pole alternator which runs at						
	1200 rpm, having flux per pole of 0. 1 Wb sinusoidally distributed. Its stator has 54 slots having						
	double layer winding. Each coil has 8 turns and the coil is chorded by 1 slot.						
	UNIT - V						
9 a.	Obtain an expression for emf of a transformer.	6					
b.	What is a transformer? Explain the construction of Core type and Shell type transformer.	8					
c.	In a 25 kVA, 2000/200 V, single phase transformer, the iron and full-load copper losses are						
	350 and 400 W respectively. Calculate the efficiency at unity power factor at,	6					
	i) Full load ii) Half full-load						
10 a.	Explain the concept of rotating magnetic field in a three phase induction motor.						
b.	. Explain the concept of slip and its significance in a three phase induction motor.						
c.	A 10-pole induction motor is supplied by a 6-pole alternator which is driven at 1200 rpm. If the motor runs at a slip of 3%, what is the speed of the induction Motor?						