\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Fourth Semester, B.E. - Computer Science and Engineering
Semester End Examination; May / June - 2019
Theory of Computation Max. Marks: 100
Time: 3 hrs
Note: Answer FIVE full questions, selecting $\boldsymbol{O N E}$ full question from each unit. UNIT - I

1 a . Define DFSM for the following :
i) $L=\left\{w \in\{a, b\}^{*}: w\right.$ has $b b a b$ as a substring $\}$
ii) $L=\left\{w \in\{a-z\}^{*}:\right.$ all five vowels occur in w in alphabetical order $\}$
b. Design the following NFA to its equivalent DFA,

2 a . Minimize the following machine M ,

b. Convert the following NDFSM to DFSM,

UNIT - II
3 a. Give regular expression to describe the following languages :
i) $L=\left\{w \in\{a, b\}^{*}\right.$: Every a in w is immediately preceded and followed by $\left.b\right\}$
ii) $L=\left\{w \in\{a, b\}^{*}:|w|\right.$ is even $\} \quad$ iii) $L=\left\{w \in\{a, b\}^{*}: w\right.$ has both $a a$ and $a b a$ as substring?
b. Construct FSM for the given regular expressions :
i) $(a b)^{*}(a a b)^{*}$
ii) $(b \cup a b)^{*}$
c. Convert the following FSM to regular expression using state elimination method :

4 a. State and explain Kleene's theorem for regular expression.
c. Prove that the language: $L=\left\{w w^{R}: w \in\{a, b\}\right\}$ are not regular languages.

UNIT - III

5 a . Define CFG. Construct CFG for the following languages :
i) $L=\left\{a^{i} b^{j} c^{k} \mid k=i+j, \quad i>=0, \quad j>0\right\}$
ii) $L=\left\{a^{n} b^{m} c^{k} \mid n+2 m=k, \quad \mathrm{n}, \quad m>0\right\}$
b. Consider the grammar: $E \rightarrow+\left.E E\right|^{*} E E|-E E| x|y|$. Find the left most and right most derivation for the string $+^{*}-x$ y x y and write the parse tree.
c. Convert the following grammar into CNF :
$\mathrm{S} \rightarrow \mathrm{ABC}$
$\mathrm{A} \rightarrow \mathrm{ac} \mid \mathrm{D}$
$\mathrm{B} \rightarrow \mathrm{bB}|\in| \mathrm{A}$
$\mathrm{C} \rightarrow \mathrm{Ac} / \in \mid \mathrm{Cc}$
$\mathrm{D} \rightarrow \mathrm{aa}$

6 a . Prove that the context free languages are closure under union, concatenation and Kleene star with example.
b. State and prove pumping lemma for CFG and prove that the following languages are not CFL:
$L=\left\{w c w \mid w \in\{a, b\}^{*}\right\}$

UNIT - IV

7 a. Design the pushdown automata for the language $L=\left\{w c w^{R} / w \in\{a, b\}^{*}\right\}$
Also, draw the transition diagram. Show the string acceptance for the string $w=$ 'abacaba'
b. Define Deterministic Pushdown Automata with conditions and give an example.

8 a. Design Pushdown Automata for the language $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$. Show the string acceptance for $w=' a a b b$ '.
b. Obtain PDA from the following grammar :
i) $\mathrm{S} \rightarrow \mathrm{aABC}$
ii) $\mathrm{A} \rightarrow \mathrm{aB} / \mathrm{a}$
iii) $B \rightarrow b A / b$
iv) $\mathrm{C} \rightarrow \mathrm{a}$
UNIT - V

9 a. Construct a Turing machine to accept the language: $L=\left\{a^{n} b^{n} \mid n \geq 0\right\}$. Draw the transition table.
b. Construct a Turing machine to recognize the language: $L=\left\{0^{n} 1^{n} \mid n \geq 0\right\}$. Show that string acceptance for the string $w=0011$.
10. Write a short notes on the following :
i) Undecidable problems
ii) Recursively enumerable languages
iii) Multi-track turing machine
iv) Post correspondence problem

