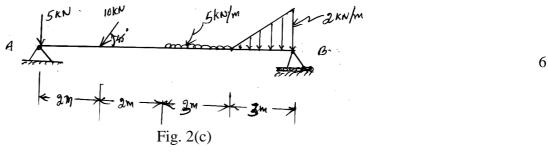


Note: Answer FIVE full questions, selecting ONE full question from each unit.


UNIT - I

- 1 a. Write a brief note on basic idealization of engineering mechanics.
 - b. With neat sketches, briefly explain different types of force systems.
 - c. Determine the magnitude and direction of the resultant for the system shown in Fig.1(c).

40° 5 N

- 2 a. What is support reaction? With neat sketch, explain different types of supports with their reaction details.
 - b. List and explain different types of loads that are commonly applied on beams with their reduced concentrated loads.
 - c. A beam AB is loaded as shown in Fig. 2(c), compute the reactions at the supports.

UNIT - II

- 3 a. Distinguish between Centre of gravity and Centroid.
 - b. From the first principle locate the Centroid of a rectangle of breadth "b" depth "d".
 - c. Locate the centroidal coordinates of the shaded area shown in Fig. 3(c) about ox and oy.

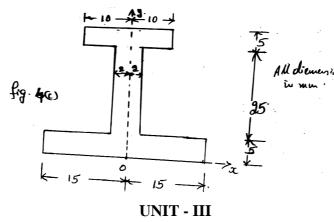
6

6

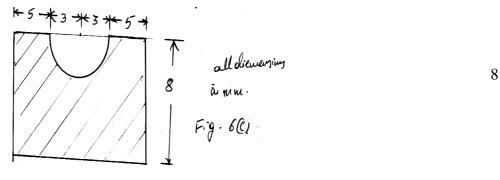
8

8

6


4

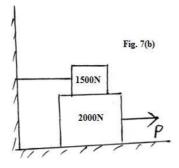
6


Page No... 2

P15CV23

- 4 a. With the aid of sketches, explain axis of symmetry and axis of reference.
 - b. Locate the centroidal coordinate of a quarter of a circle of radius "*R*" by method of integration.
 - c. Determine the centroidal coordinates of the lamina shown in Fig.4(c) about *ox* and *oy*.

- 5 a. State and prove Parallel axis theorem.
 - b. By the method of integration, derive an expression for M.I of a rectangle of breadth 'b' and depth 'd' about its base.
 - c. Determine the moment of inertia of the lamina shown in Fig. 4(c) about axis *oy*. Also find radius gyration.
- 6 a. Write a note on; i) Polar moment of inertia ii) Radius of gyration.
 - b. State and prove perpendicular axis theorem.
 - c. Determine the moment of inertia of the section shown in Fig. 6(c) about its centroidal x-x axis.



7 a. Write brief note on;

i) Limiting friction ii) Angle of repose iii) Cone of friction iv) Resultant reaction

b. A block of weight 2000 N rest on a horizontal floor and carries another block of 1500 N as shown in Fig. 7(b). What should be the value of "P" to move the block of 2000 N to the right? Take $\mu = 0.3$ for all contact surfaces.

12

8

5 7

6

6

8

6

6

8

P15CV23			Page No 3			
8 a.	State laws of dry friction.					4
b.	Show that coefficient of friction in equal to tangent of the angle of friction.					6
c.	. A ladder of 6 m long rests on a horizontal floor and vertical wall. The ladder weighs 250 N and					
	carries a weight of 800 N at a distance of 4 m along the ladder at which it starts s					10
	Calculate the reactions and forces at the contact points and the inclination at which it					
	being placed.					
UNIT - V						
9 a.	With neat sketch explain;					
	i) Angle of projection	ii) Time of flight				10
	iii) Horizontatl range	iv) Vertical height		v) Trajectory		
b.	A particle is fired with a velocity of 40 m/s at an angle of 25° with horizontal, Determine;					
	i) Horizontal range					10
	ii) Time of flight					10
	Take; $g = 9.81 \text{ m/s}^2$					
10 a.	Explain the terms work, power and energy.					6
b.	State and explain D'Alembert's principle.					6
c.	A pile hammer weighing 2500 N falls on a pile. If the hammer drops freely from a height of					
	5 m, find the impulsive force of the below, if the hammer comes to rest in 1/100 second.					8
	Take: $g = 9.81 \text{ m/s}^2$.					

* * * *