

UNIT - IV

7 a.	With flow diagram, explain conventional sewage treatment plant units and state major	6
	impurities removed in each unit.	6
b.	Briefly explain design factors of grit chamber.	6
c.	Design a suitable circular primary classifier to treat 12 MLD sewage flow. Check for	0
	overflow rate and weir loading rate.	8
8 a.	Compare attachment and suspended growth system of biological treatment.	6
b.	Bring out aerobic and anaerobic decomposition of sewage.	6
c.	Design a low rate tricking filter using NRC equation to treat 6 MLD of sewage having BOD	
	of 210 mg/L. The treated effluent BOD should be 30 mg/L. Take organic loading rate as	8
	320 g/m ³ /d. Assume 30% BOD removed in PST.	
UNIT - V		
9 a.	With flow diagram, explain the process of treatment of sewage in Activated Sludge	8
	Process (ASP).	0
b.	Bring out process modifications of ASP in brief.	6
c.	Explain the importance of F/M ratio in the operation of ASP as primary control parameter.	6
10 a.	Explain the steps of anaerobic digestion. Sketch typical anaerobic sludge digester.	8
b.	Explain sludge drying bed wth suitable sketch.	6
c.	Design a septic tank for a hostel facility of 200 persones with water supply rate of 135 LPCD.	
	Take peak factor = 2; 80% of water supplied becomes spent; Detention time 24 hours; Length	6
	to bredth 1:3. Assume suitabaly missing data. Draw a line diagram showing desinged	0
	dimensions. Rate of sludge deposited may be taken as 30 L/capita/day.	

* * * *