U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Sixth Semester, B.E. - Civil Engineering Semester End Examination; May / June - 2019 Design of Masonry Structures

Time: 3 hrs Max. Marks: 100

Note: i) Answer FIVE full questions, selecting ONE full question from each unit.

ii) Use of IS 1905:1987 and SP:20 code of practice is permitted.

	UNIT - I						
1 a.	a. List out the engineering properties of a brick? Explain in detail the efflorescence test and compressive strength.						
b.							
2 a.							
b.							
	i) Water retentivity ii) Drying shrinkage						
	UNIT - II						
3 a.	3 a. Discuss the effect of joint thickness on brickwork strength.						
b.	Write a short note on;						
	i) Effect of masonry height on compression strength						
	ii) Influence of masonry bonding patterns on strength						
c.	c. Write a short note on multi axis stress theory.						
4 a.	a. Derive the formulae for brickwork strength based on elastic analysis.						
b.	b. Write a short note on:						
	i) Effect of curing ii) Workmanship.	8					
	UNIT - III						
5 a.	Write a short note on increase in permissible compressive stress allowed for vertical and	10					
	lateral loads with neat sketches.						
b.	b. Write a short note on :i) Area Reduction factor ii) Shape modification factor.						
6 a.	Explain the following terms:	6					
	i) Permissible compressive stress ii) Permissible shear stress iii) Permissible tensile stress	U					
b.	A brick masonry wall of single room building is 20 cm thick and is supported by 10 cm thick						
	RCC slab at its top and bottom. The wall carries a vertical load (inclusive of its own weight)						
	of 80 kN/m at the base at an eccentricity ratio of 0.10, the length of wall is 3 m between the	14					
	cross walls. Storey height = 3 m. Determine the required crushing strength of bricks and type						
	of mortar used. Use modular bricks.						

Page No... 2

7 a. List the design steps involved for the design of Masonry walls under gravity loads.

5

b. Explain the arching action in lintels.

5

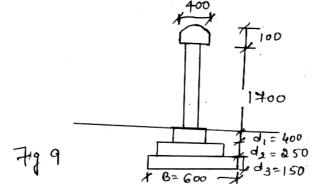
c. A reinforced brickwork lintel is made of brick on edge having a total depth of 175 mm and breadth equal to 220 mm. The total reinforcement consists of 4 numbers of 6 mm φ mild steel bars placed at 25 mm from bottom face as shown in Fig. 7.1. The characteristic strength of brickwork and steel are 8 N/mm² and 250 N/mm² respectively. Determine the moment capacity of the lintel.

Fig 7.1.

10

8 a. Design an interior wall of a two storied building carrying 100 mm thick RCC slabs with 3 m ceiling height. The wall is unstiffened and it supports a 2.65 m wide slab.

15


b. Write a short note on load dispersion in masonry walls.

5

UNIT - V

9. Design a compound wall of height 1.8 m upto the top of the coping as shown in Fig. 9. Assuming wind pressure is 1000 N/m^2 distributed uniformly. The safe bearing capacity of soil = 120 kN/m^2 .

20

20

- 10. Write short notes on:
 - i) In filled frames

- ii) Free standing wall
- iii) Composite wall beam elements
- iv) Wall with openings

20