\square

P.E.S. College of Engineering, Mandya - 571401
 (An Autonomous Institution affiliated to VTU, Belagavi)
 Second Semester, B.E. - Semester End Examination; May / June - 2019 Electronic Devices and Communication
 (Common to All Branches)

Time: 3 hrs
Max. Marks: 100
Note: Answer $\boldsymbol{F I V E}$ full questions, selecting $\boldsymbol{O N E}$ full question from each unit.

UNIT - I

1 a . Using the series diode configuration, explain the concept to fix Q-point on the diode forward characteristics curve.
b. Explain full wave bridge rectifier.
c. Determine the range of input voltage for a basic Zener regulator to maintain the Zener diode in 'on' state. Take; $\mathrm{R}=220 \Omega, \mathrm{R}_{\mathrm{L}}=1.2 \mathrm{k} \Omega, \mathrm{V}_{\mathrm{Z}}=20 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{ZM}}=60 \mathrm{~mA}$.

2 a. With circuit diagram and waveform, explain clamping circuit.
b. Explain center-tapped full wave rectifier.
c. Describe the operation of IR emitters.

UNIT - II

3 a. Describe the device structure, operation and characteristics curve of n-channel enhancement type MOSFET.
b. For the voltage divider network with n-channel E-type MOSFET. Find $\mathrm{I}_{\mathrm{DQ}}, \mathrm{V}_{\mathrm{GSQ}}$ and V_{DS}. Take; $\mathrm{V}_{\mathrm{T}}=5 \mathrm{~V}, \mathrm{I}_{\mathrm{D}(\text { (on })}=3 \mathrm{~mA}$ at $\mathrm{V}_{\mathrm{GS}(\text { on })}=10 \mathrm{~V}, \mathrm{R}_{1}=22 \mathrm{M} \Omega, \mathrm{R}_{2}=18 \mathrm{M} \Omega, \mathrm{R}_{\mathrm{D}}=3 \mathrm{k} \Omega$, $\mathrm{R}_{\mathrm{S}}=0.82 \mathrm{k} \Omega$, and $\mathrm{V}_{\mathrm{SS}}=40 \mathrm{~V}$.

4 a . Describe the device structure, operation and characteristics curve of depletion type MESFET.
b. For the network shown in Fig. 4(b), $\mathrm{V}_{\mathrm{GSQ}}=0.35 \mathrm{~V}$ and $\mathrm{I}_{\mathrm{DQ}}=7.6 \mathrm{~mA}$
i) Determine g_{m} and $g_{m o}$
ii) Find r_{d}
iii) Sketch the AC equivalent circuit
iv) Find Z_{i}, Z_{0} and A_{v}

5 a . Describe the operation of 3-input inverting summing amplifier.
b. Write the circuit diagram and output voltage equation for the followingn Opamp circuit :
i) Integrator
ii) Differentiator
c. Describe the following :
i) Gain Bandwidth
ii) Slew Rate
iii) Maximum Signal Frequency

6 a . Show the cascade connection of an LM124 quad Opamp as a three stage amplifier with gain of $+10,-18$ and -27 . Use a $270 \mathrm{k} \Omega$ feedback resistor for all three stages. What output voltage will result for an input of $150 \mu \mathrm{~V}$?
b. Describe the following controlled sources :
i) Voltage controlled voltage source
ii) Current controlled voltage source
c. With circuit diagram and frequency response curve, explain first order high pass active filter.

UNIT - IV

7 a. With block diagram, explain the architecture of 8051 microcontroller.
b. Perform the following :
i) $(294.6875)_{10}=(\quad)_{8}=(\quad)_{2}$
ii) $(458.341)_{10}=(\quad)_{16}=(\quad)_{2}$
c. Explain Program Status Word (PSW) in 8051.

8 a. Explain TMOD and TCON register in 8051.
b. Perform the following :
i) $(13)_{10}-(25)_{10}$ using 2 's complement
ii) $(25)_{10}-(13)_{10}$ using 1 's complement
c. Define Microprocessor and Microcontroller.

UNIT - V

9 a. Describe the principle of wireless communicaton system.7
b. Explain the basic cellular system architecture . 7
c. Define call drop. Why it occurs? 6

10 a. With block diagram, explian first generation basic cellular radio network. 10
b. Explain the cell concept and frequency reuse.

