

- A large brass washer has a 2 cm inside diameter, a 5 cm outside diameter, and is 0.5 cm b. thick. Its conductivity is $\sigma = 1.5 \times 10^7$ S/m. The washer is cut half along a diameter, and a voltage is applied between the two rectangular faces of one part. The resultant electric field in interior of the half-washer is E = $0.5/\rho a_{\phi} V/m$ in cylindrical coordinates, where washer is along Z - axis;
 - i) Potential difference exists between 2 rectangular faces
 - ii) What total current is flowing?
 - iii) What is the total resistance between the two faces?

Contd....2

10

P15EC46

Page No... 2

UNIT - III

- 5 a. Describe scalar and vector magnetic potential in detail.
 - b. A current filament on the Z-axis carries a current of 7 mA in a $\overline{a_z}$ direction and current sheets of 0.5 a_z A/m and -0.2 a_z A/m are located at $\rho = 1$ cm and $\rho = 0.5$ cm respectively. Calculate H.

i)
$$\rho = 0.5$$
 cm ii) $\rho = 1.5$ cm iii) $\rho = 4$ cm

iv) What current sheet should be located at $\rho = 4$ cm so that H = 0 for all $\rho > 4$ cm?

- 6 a. Illustrate magnetic Boundary conditions for tangential and normal components.
- b. A point charge for which $Q = 2x10^{-6}$ C and $M = 5x10^{-26}$ kg is moving in the combined fields $E = 100a_x - 200a_y + 300a_z$ V/m and $B = -30a_x + 2a_y - a_z$ mT. If the charge velocity at t = 0 is $V(0) = (2a_x - 3a_y - 4a_z) 10^5$ m/s 12
 - i) Give the unit vector showing the direction in which the charge is accelerating at t = 0
 - ii) Find the kinetic energy of the charge at t = 0.

UNIT - IV

- 7 a. Summarize point and integral form of Maxwell's \in_0^m .
 - b. Discuss displacement current density in detail using appropriate equations and analysis.
- 8 a. The phasor magnetic field intensity for a 400 MHz uniform plane wave propagating in a certain losses material is (2a_y j5a_z) e^{-j25e}A/m. Knowing that the maximum amplitude of E is 12 1500 V/m. Find β, n, λ, V_p, ∈_r, μ_r and H (x, y, z, t).
- b. Write a note on plane wave reflection and its coefficient. 8

UNIT - V

- 9 a. What is wave tilt and mention the salient features of wave tilt.
 8
 b. Describe field strength due to the space wave using appropriate equations and mention any two considerations of it.
- 10 a. Mention the characteristics parameters of Ionosphere propagation.
 - b. Write a note on:
 - i) Critical frequency f_c
 - ii) MUF
 - iii) LUF
 - iv) OWF

* * * *

10

10

8

8

12

10

10