	P15EC64 Page No 1
	P.E.S. College of Engineering, Mandya - 571 401
	(An Autonomous Institution affiliated to VTU, Belagavi)
	Sixth Semester, B.E Electronics and Communication Engineering
	Semester End Examination; May / June - 2019 Digital Communication
	Time: 3 hrs Max. Marks: 100
	Note: Answer FIVE full questions, selecting ONE full question from each unit.
	UNIT - I
1 a.	With the help of a neat block diagram, explain digital communication system.
b.	Classify electromagnetic spectrum based on their frequency ranges and list the applications of
	each frequency range.
c.	Explain the process of communication channel modelling by analyzing the electrical behavior of
	the channel.
2 a.	With necessary diagrams and equation, explain "Quadrature sampling of bandpass signals".
b.	Explain the concepts of ideal sampling. Derive the interpolation formula,
	$g(t) = \sum_{-\infty}^{\infty} g(\frac{n}{2w}) \sin c(2wt - n).$
	UNIT - II
3 a.	Using sinusoidal signal as the input, derive an expression for the signal to quantization noise ratio
	of the uniform quantizer.
b.	With the help of a neat block diagram, explain the operation of Pulse Code Modulation.
c.	List the disadvantages of PCM system and explain how it can be overcome using DPCM?
4 a.	A compact disc records audio signal digitally by using PCM. Assume the audio signal bandwidth
	to be 15 kHz;
	i) Calculate the Nyquist rate
	ii) If the Nyquist samples are quantized to $L = 65,536$ levels and then binary coded, determine
	the number of binary digits required to encode a sample
	iii) Determine the number of binary digits per second required to encode the audio signal
b.	With the help of a neat block diagram, explain the operation of TDM system.
c.	Define the types of noise encountered in delta modulation and explain how it can be overcome by
	using Adaptive Delta Modulation?
	UNIT - III
5 a.	For the binary bit stream 1001011100. Draw the waveforms for;
	i) Polar NRZ ii) Polor RZ iii) Manchester iv) Bipolar NRZ
b.	Define ISI. Explain how ISI can be controlled?

Explain Adaptive Equalization for data transmission. c.

6

	P15EC64 Page No 2			
6 a.	Sketch and derive power spectra of a NRZ bi-polar format.	8		
b.	Construct duo binary coder output and corresponding receiver output in the absence of noise. The			
	binary data stream 0010110 is applied to the input of a duo binary system. Assume that there is	12		
	precoder at the input.			
UNIT - IV				
7 a.	Derive an expression for the average probability of symbol error of coherent binary FSK system.	10		
b.	With the help of a block diagrams, explain the operation of QPSK transmitter and receiver.	10		
8 a.	With a neat block diagram, explain MSK transmitter and receiver.	10		
b.	Derive an expression for the average probability of symbol error of coherent binary ASK system.	10		
UNIT - V				
9 a.	With a block diagram, explain non-coherent orthogonal modulation scheme.	10		
b.	With the help of a block diagrams, explain the operation of DPSK transmitter and receiver.	10		
10 a.	Explain GRAM-SCHMIDT orthoganalization procedure.	6		
b.	With a neat block diagram, explain correlation receiver.	8		
c.	List any three important properties of matched filters.	6		

c. List any three important properties of matched filters.

* * * *