U.S.N
 \square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Fourth Semester, B.E. - Electrical and Electronics Engineering
Semester End Examination; May/June - 2019
Electromagnetic Field Theory
Time: 3 hrs
Max. Marks: 100
Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

1 a. Explain Coulomb's law in electrostatics.
b. Derive the expression for field intensity due to an infinite sheet of charge.
c. Infinite uniform the charges of $5 \mathrm{nC} / \mathrm{m}$ tie along the (positive and negative) x and y axes in free space. Find E at;
i) $\mathrm{P}_{\mathrm{A}}(0,0,4)$
ii) $\mathrm{P}_{\mathrm{B}}(0,3,4)$

2 a. Starting from fundamental's, obtain Maxwell's first equation in electrostatics.
b. Discuss the Gauss's law application to determine field due to a spherical shell of charge.
c. Given $D=\left[10 r^{2}+5 e^{-r}\right] a_{r}\left(\mathrm{C} / \mathrm{m}^{2}\right)$. Find the following :
i) ρ_{v} as a function of r
ii) The total charge enclosed by a sphere of radius ' a ' centered at the origin

UNIT - II

3 a. What is electric potential? Also derive the expression for potential due to a point charge.
b. Obtain the expression for energy density in an electrostatic field.
c. The electric potential at an arbitrary point in force space is given as, $V=(x+1)^{2}+(y+2)^{2}+(z+3)^{2}$ At $\mathrm{P}(1,1,1)$, find;
i) V
ii) E
iii) $|E|$
iv) D
v) $|D|$
vi) ρ_{v}

4 a. Discuss in brief about the Poisson's and Laplace's equations.
b. State and prove Uniqueness theorem.
c. If $D=0.1 r a_{r}\left(C / m^{2}\right)$, and $\frac{0.0064}{r^{2}}\left(C / m^{2}\right)$ for $r \geq 0.4(m)$:
i) Find ρ_{v} at $r=0.2$ and 0.5 (m)
ii) What point charge could be placed at the origin to cause D to be zero for $r \geq 0.4$?

UNIT - III

5 a. Derive the equation for continuity of current.
b. Discuss the boundary conditions between conductor and free space.
c. Find the total current in outward direction from a cube of 1 m , with one corner at the origin and edges parallel to the coordinate axes if,
$\bar{J}=2 x^{2} \bar{a}_{x}+2 x y^{3} \bar{a}_{y}+2 x y \bar{a}_{z} A / m^{2}$

6 a. Derive the expression for the capacitance of a parallel plate capacitor.
b. Discuss the boundary conditions between two perfect dielectrics.
c. A spherical condenser has a capacity of 54 pF . It consists of two concentric spheres differing in radii by 4 cm and having air as dielectric. Find their radii.

UNIT - IV

7 a. State and explain Biot-Savart's law.
b. Using Biot-Savart's law, find the magnetic flux density at a point due to current in a straight conductor of infinite length.
c. Find the magnetic field intensity at a point P for the circuit shown in Fig. 7(C).

Fig. $7(C)$.

8 a. State and prove Stoke's theorem.
b. With the help of Ampere's circuital law, find the magnetic field intensity due to a straight solid cylindrical conductor.
c. A radial magnetic field, $\bar{H}=\frac{(2.239) \times 10^{6}}{r} \cos \phi \bar{a}_{r} A / m$ exists in free space.

Find the magnetic flux ϕ crossing the surface defined by, $-\frac{\pi}{4} \leq \phi \leq \frac{\pi}{4}, 0 \leq z \leq 1 \mathrm{~m}$.

UNIT - V

9 a. For a stationary closed path in time varying magnetic field B, show that $\nabla \times \bar{E}=\frac{-\partial \bar{B}}{\partial t}$.
b. Derive the equation for the emf induced, when a conductor is moved in a uniform constant magnetic field.
c. An area of $0.65 \mathrm{~m}^{2}$ in the plane $z=0$ enclosed a filamentary conductor. Find the induced voltage if $\bar{B}=0.005 \cos 10^{3} t\left[\frac{\bar{a}_{y}+\bar{a}_{z}}{\sqrt{2}}\right]$ tesla

10 a. Derive the expression for force on a moving point charge.
b. Derive the expression for force between differential current elements.
c. Find the force per m length between two long parallel wires separated by 10 cm in air and carrying current of 100 A in opposite directions. State the nature of force between wires.

