	P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Fourth Semester, B.E Electrical and Electronics Engineering Semester End Examination; May/June - 2019 Electromagnetic Field Theory
	Time: 3 hrs Max. Marks: 100
	Note: Answer FIVE full questions, selecting ONE full question from each unit.
	UNIT - I
1 a.	Explain Coulomb's law in electrostatics.
b.	Derive the expression for field intensity due to an infinite sheet of charge. Infinite uniform the charges of 5 π C/m tie clone the (negitive and negative) u and u area in free
c.	Infinite uniform the charges of 5 nC/m tie along the (positive and negative) x and y axes in free space. Find E at;
	i) $P_A(0, 0, 4)$ ii) $P_B(0, 3, 4)$
2 a.	Starting from fundamental's, obtain Maxwell's first equation in electrostatics.
 b.	Discuss the Gauss's law application to determine field due to a spherical shell of charge.
c.	
	i) ρ_v as a function of r
	ii) The total charge enclosed by a sphere of radius 'a' centered at the origin
	UNIT - II
3 a.	What is electric potential? Also derive the expression for potential due to a point charge.
b.	Obtain the expression for energy density in an electrostatic field.
c.	The electric potential at an arbitrary point in force space is given as,
	$V = (x + 1)^{2} + (y + 2)^{2} + (z + 3)^{2} \text{ At P}(1, 1, 1), \text{ find};$
	i) V ii) E iii) $ E $ iv) D v) $ D $ vi) ρ_v
4 a.	Discuss in brief about the Poisson's and Laplace's equations.
b.	State and prove Uniqueness theorem.
c.	If $D = 0.1r \ a_r (C/m^2)$, and $\frac{0.0064}{r^2} (C/m^2)$ for $r \ge 0.4(m)$:
	i) Find ρ_v at $r = 0.2$ and 0.5 (m)
	ii) What point charge could be placed at the origin to cause <i>D</i> to be zero for $r \ge 0.4$?
-	UNIT - III
5 a.	Derive the equation for continuity of current.
b.	Discuss the boundary conditions between conductor and free space. Find the total current in outward direction from a cube of 1 m, with one corner at the origin and
c.	edges parallel to the coordinate axes if,
	$\overline{I} = 2r^2\overline{a} + 2rv^3\overline{a} + 2rv\overline{a} - A/m^2$

$$\overline{J} = 2x^2 \overline{a}_x + 2xy^3 \overline{a}_y + 2xy \,\overline{a}_z \,A/m^2$$

Contd...2

	P15EE46 Page No 2		
6 a.	Derive the expression for the capacitance of a parallel plate capacitor.	6	
b.	Discuss the boundary conditions between two perfect dielectrics.	8	
c.	A spherical condenser has a capacity of 54 pF. It consists of two concentric spheres differing in	6	
	radii by 4 cm and having air as dielectric. Find their radii.		
UNIT - IV			
7 a.	State and explain Biot-Savart's law.	6	
b.	Using Biot-Savart's law, find the magnetic flux density at a point due to current in a straight	8	
	conductor of infinite length.	0	
c.	Find the magnetic field intensity at a point P for the circuit shown in Fig. 7(C).		
	Jom Jest Semi circle Jom Jest Semi circle JE= 10A	6	

- 8 a. State and prove Stoke's theorem.
 - b. With the help of Ampere's circuital law, find the magnetic field intensity due to a straight solid cylindrical conductor.

6

8

6

7

6

8

6

 $F_{iq}, \mp (c).$

c. A radial magnetic field,
$$\overline{H} = \frac{(2.239) \times 10^6}{r} \cos \phi \,\overline{a_r} \, A / m$$
 exists in free space.

Find the magnetic flux ϕ crossing the surface defined by, $-\frac{\pi}{4} \le \phi \le \frac{\pi}{4}, 0 \le z \le 1 m$.

UNIT - V

9 a. For a stationary closed path in time varying magnetic field B,

show that
$$\nabla \times \overline{E} = \frac{-\partial \overline{B}}{\partial t}$$
.

- b. Derive the equation for the *emf* induced, when a conductor is moved in a uniform constant magnetic field.
- c. An area of 0.65 m² in the plane z = 0 enclosed a filamentary conductor. Find the induced voltage if

$$\overline{B} = 0.005 \cos 10^3 t \left[\frac{\overline{a}_y + \overline{a}_z}{\sqrt{2}} \right] tesla$$

- 10 a. Derive the expression for force on a moving point charge.
 - b. Derive the expression for force between differential current elements.
 - c. Find the force per *m* length between two long parallel wires separated by 10 cm in air and carrying current of 100 A in opposite directions. State the nature of force between wires.