P.E.S. College of Engineering, Mandya - 571401
 (An Autonomous Institution affiliated to VTU, Belagavi)
 Fourth Semester, B.E. - Industrial and Production Engineering Semester End Examination; May / June - 2019
 Theory of Machines

Time: 3 hrs
Max. Marks: 100
Note: Answer FIVE full questions, selecting ONE full question from each unit. UNIT - I

1. Sketch all the inversions of the four bar chain for one application in each inversion.

2 a. Derive the Kutzbach's criterion: $m=3(n-1)-2 j_{1}-j_{2}$. Where;
$m=$ Mobility; $n=$ No. of links; $j_{1}=$ No. of lower pair joints; $j_{2}=$ No. of higher pair joints.
b. Derive the condition of Ackermann steering gear mechanism.

UNIT - II

3 a. Derive an expression for the path of contact for a pair of spur gears.
b. Explain the concept of interference and discuss the methods of avoiding it.
4. A fixed annular wheel A and a smaller concentric rotating wheel B are connected by a compound wheel $A_{1} B_{1}$, the gear A_{1} mesh with wheel A and B_{1} with B. The compound wheel resolves on a pin on arm R, which revolves about the axis of A and B. A has 130 teeth, $B=20$, and $\mathrm{B}_{1}=80$, the pitch of A and A_{1} being twice the pitch of B and B_{1}. How many revolutions will B make for one revolution of the arm R ?

UNIT - III

5. Derive the expression for ratio of friction tensions for V-Belt drive considering centrifugal tension into account $\frac{\tau_{1}-\tau_{C}}{\tau_{2}-\tau_{C}}=e^{\mu \vartheta / \sin \alpha}$.

6 a . Prove that for the condition of maximum power transmission, the Centrifugal tension,

$$
\tau_{c}=\frac{\text { maximum tension }}{3} .
$$

b. Determine the maximum power that can be transmitted through a flat belt having the following data :

Cross-section of the belt $=300 \mathrm{~mm} \times 12 \mathrm{~mm}$
Ratio of friction tensions $=2.2$
Maximum permissible tension in belt $=2 \mathrm{MPa}$
Maximum density of the Material $=0.0011 \mathrm{~g} / \mathrm{mm}^{3}$

UNIT - IV

7. Four masses A, B, C and are D are completely balanced. Masses C and D make angles of 90° and 210° respectively with B in the same sense. The planes containing B and C are 300 mm apart. Masses A, B, C and D can be assumed to be concentrated at radii of 360, 480, 240 and 300 mm respectively. The masses B, C and D are $15 \mathrm{~kg}, 25 \mathrm{~kg}$ and 20 kg respectively.
Determine;
i) Mass A and its angular position
ii) Position of planes A and D

8 a. Show that for a porter Governor $N^{2}=\frac{895}{h}\left[\frac{2 m g+(M g \pm f)(1+K)}{2 m g}\right]$ with usual notations.
b. In a Hartnell governor, the extreme radius of rotation of the balls is 40 mm and 60 mm , and the corresponding speeds are 210 rpm and 230 rpm . The mass of each ball is 3 kg . The lengths of the ball and the sleeve arms are equal. Determine the initial compression and the constant of the central spring.

UNIT - V

9 a. Show that Gyroscopic couple is $C=I w w_{p}$, with usual notations. 10
b. Explain the Gyroscopic couple in aeroplane. 10
10. Explain the Gyroscopic couple in Naval ships during pitching, on-pitching and rolling.

