U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Sixth Semester, B.E. - Industrial and Production Engineering Semester End Examination; May/June - 2019 Theory of Metal Cutting

Time: 3 hrs Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

1 a.	With a neat sketch, explain mechanics of metal cutting and mechanics of chip formation process.	12				
b.	Explain the effect of cutting parameters on Tool Geometry.					
2 a.	With a neat sketch, explain Nomenclature of single point cutting tool.					
b.	Explain ASA and ISO tool Nomenclature system.	10				
	UNIT - II					
3 a.	With a neat sketch, explain the different forces acting in metal cutting process.	5				
b.	o. Derive an expression for shear plane angle.					
c.	Derive the expressions for F_f and F_n in orthogonal metal cutting process.	8				
4 a.	a. Explain the reasons for measuring cutting forces.					
b.	With a neat sketch, explain working of lathe tool, milling dynamometer and drilling dynamometer.	15				
	UNIT - III					
5 a.	. Define Machinability and Machinability Index.					
b.	. What is Tool Life? With a neat sketch, explain how failure of tool takes place?					
6 a.	Briefly explain the different costs of manufacturing a component.					
b.	b. Derive an expression for optimum cutting speed and tool life for;					
	i) Minimum production cost ii) Maximum production rate	14				
	UNIT - IV					
7 a.	. Explain the functions and properties of cutting fluid.					
b.	b. With a neat sketch, explain Tool-work thermocouple.					
8 a.	a. With a neat sketch, explain heat generation in metal cutting process.					
b.	Briefly explain the factors affecting heat generation in metal cutting process.					
c.	With a neat sketch, explain application and penetration of cutting fluid.	8				
	UNIT - V					
9 a.	. Mention the requirement of cutting tool materials.					
b.	Briefly explain High speed steels and cement carbide tools.	12				
10.	Write a note on following tool materials					
	i) Diamond ii) Sialon	20				
	iii) CBN iv) UCON					