U.S.N

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi) Sixth Semester, B.E., - Industrial and production Engineering Semester End Examination; May/June - 2019 Quality Assurance and Reliability

Time: 3 hrs

Max. Marks: 100

Note: i) *Answer FIVE full questions, selecting ONE full question from each unit. ii*) *Use of SQC table is permitted.*

UNIT - I

1 a.	Describe the eight dimensions of Quality in briefly.	10						
b.	Explain the Prevention Cost and Appraisal Cost with example.	10						
2 a.	Define Quality Assurance. Explain Quality Assurance activities.	10						
b.	b. Explain the following :							
	i) Audit reporting ii) Quality audit concept.	10						
	UNIT - II							
3 a.	With a neat sketch, explain basic principles of control charts.	10						
b.	Write a short note on the following :	10						
	i) Causes for variation ii) Sample size and Sampling frequency	10						
4 a.	With a neat sketch, explain R-chart.	5						

b. The following are the \bar{x} and *R* values for 20 sub-groups and five readings. The specifications for this product are 37 ± 10 . The values given are the last two figures of the dimension.

Subgroup	\overline{x}	R	Subgroup	\overline{x}	R
1	34.0	4	11	35.8	4
2	31.6	4	12	38.4	4
3	30.8	2	13	34.0	14
4	33.0	3	14	35.0	4
5	35.0	5	15	33.8	7
6	32.2	2	16	31.6	5
7	33.0	5	17	33.0	5
8	32.6	13	18	28.2	3
9	33.8	19	19	31.8	9
10	37.8	6	20	35.6	6

- i) Determine the control limits for \overline{x} and *R* chart for future use, evaluate all the out of control points
- ii) Will the process be able to meet the specification?

UNIT - III

- 5 a. With a neat diagram, explain P-chart.
 - b. Using each day's production as the days sample, draw a control chart for friction defectives on the basis of the proportion and defectives castings produced in 10 days tabulated below :

8

12

15

Page No... 2

7

10

P15IP63

7 a.

8 a.

9 a.

Day	No. of castings produced	No. of castings forms defective
1	154	4
2	152	2
3	148	2
4	150	4
5	154	3
6	145	4
7	151	2
8	154	2
9	150	1
10	153	4

6 a. A set of chair are subjected for inspection. A set consist of five chairs and there are twenty subgroups. The inspection data obtained is an follows:

	Group No.	1	2	3	4	5	6	7	8	9	10	
	No. of Defects	77	54	75	93	45	61	49	65	45	77	15
	Group No.	11	12	13	14	15	16	17	18	19	20	
	No. of Defects	59	54	41	87	40	22	92	89	55	25	
	i) Draw suitable chart	ii) Find 1	revise	d conti	ol lim	its, if 1	the pro	cess is o	out of c	control charts	
b.	Write a note on guideli	nes for	implem	entin	g contr	ol cha	rts.					5
				I	UNIT ·	·IV						
7 a.	Describe the following	i) Pr	oducer	risk	ii)	LTPD)	iii) A	OQL.			6
b.	. With a neat sketch, explain OC curve.										5	
c.	Draw OC curve for the	given S	SSP, <i>n</i> =	= 110	, <i>c</i> =1 f	or p v	alues 1	1%,2%	, 3%, 4	% and	5%.	9
8 a.	Explain seven sequenti	al samp	ling pla	ans wi	ith a ne	at ske	tch.					10
b.	A double sampling plan	n as foll	ows : 1	V = 50	$000 \ n_1$	=100	$c_1 = 0$	$n_2 =$	$100 c_2 =$	= 1		
	Compute the following	:										
	i) P _a for 1% defectives											10
	ii) If the rejected lot is	100% i	nspecte	ed, wh	nat is A	OQ? \	When	lot has	1% def	ectives	?	
	iii) What is ATI?											
UNIT - V												
9 a.	Describe the following	: i) Re	elaibilit	У	ii) M	ГBF	iii)	MTTI	F.			6
b.	Explain various types	of failu	res with	a nea	at curv	e.						7
c.	In the life testing of ter	specin	nens of	a dev	ice, tin	ne to fa	ailure	for eac	h specii	men is	recored. Find	

the MTTF for all ten specimens and the mean failure rate for T = 900 hrs.

Specimen	1	2	3	4	5	6	7	8	9	10
Time to failure (a)	805	810	815	820	825	832	842	856	875	900

10 a. What are the techniques of incresing reliability? Explain briefly.

b. Determine the system reliability of the given diagram,

0.5 10 0.6 10.8 0.6 8.07