P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Fourth Semester, B.E. - Semester End Examination; May / June - 2019
Engineering Mathematics - IV
(Common to AU, CV, ME \& IP Branches)
Time: 3 hrs
Max. Marks: 100
Note: Answer FIVE full questions, selecting $\boldsymbol{O N E}$ full question from each unit.

UNIT - I

1 a. Show that $f(z)=\cos z$ is analytic. Hence find its derivative.
b. Find an analytic function whose imaginary part is $v(x, y)=e^{x}\left\{\left(x^{2}-y^{2}\right) \cos y-2 x y \sin y\right\}$.
c. Discuss the conformal transformation $W=Z+\frac{1}{Z}, \quad Z \neq 0$.

2 a. Verify Cauchy's theorem for the integral of $f(z)=\frac{1}{Z}$ taken over the triangle formed by the points (1, 2), (3, 2), and (1, 4).
b. Expand $f(z)=\frac{z^{2}-1}{z^{2}+5 z+6}$ as Laurent's series in the regions; i) $2<|z|<3 \quad$ ii) $|z|>3$
c. Using the Cauchy's residue theorem evaluate, $\int_{C} \frac{\sin \left(\pi z^{2}\right)+\cos \left(\pi z^{2}\right)}{(z-1)^{2}(z-2)} d z$

Where C is the circle $|z|=3$.

UNIT - II

3 a. By using Bisection method, obtain an approximate root of the equation $\sin x=\frac{1}{x}$ that lies in $\left(1, \frac{1}{2}\right)$ (perform four iterations).
b. Obtain an approximate real root of $x \log _{10} x=1.2$ correct to four decimal places using Newton-Rapson method that lies in $(2,3)$.
c. Find the root of the equation $x^{3}-5 x+1$ near $x=0.5$ using fixed point iteration and accelerate the convergence by Aitken's Δ^{2} - method.
4 a. Find $y(1.1)$ from Taylor's series method up to third degree, if $y(x)$ satisfies $\frac{d y}{d x}=\log _{e}(x y), y(1)=2 .$.
b. Using modified Euler's method, find y at $x=0.4$ given $\frac{d y}{d x}=y+e^{x}, y(0)=0$ taking $h=0.2$.

Perform three iterations at each step.
c. Apply Adams-Bash forth method to compute $y(0.4)$ given $\frac{d y}{d x}=\left(x-y^{2}\right), y(0)=1$ given that $y(0.1)=0.9117, y(0.2)=0.8494$ and $y(0.3)=0.8061$.

UNIT - III

5 a . The first four moments about an arbitrary value 28.5 of frequency distribution are $0.294,7.144$, 42.409 and 454.98 . Find the skewness and kurtosis based on moments.
b. The pressure and volume of a gas are related by $P V^{\gamma}=K, \gamma$ and K being constants. Fit this equation using

P:	0.5	1.0	1.5	2.0	2.5	3.0
V:	1.62	1.00	0.75	0.62	0.52	0.46

c. Obtain the correlation coefficient and regression lines from the data,

x	21	23	30	54	57	58	72	78	87	90
y	60	71	72	83	110	84	100	92	113	135

6 a . The probability density function of a variable X is,

$X:$	0	1	2	3	4	5	6
$P(X):$	K	$3 K$	$5 K$	$7 K$	$9 K$	$11 K$	$13 K$

Find $K, P(X<4), P(X \geq 5), P(3<X \leq 6)$.
b. In a certain factory turning out razor blades, there is a small chance of 0.002 for any blade to be defective. The blades are supplied in packets of 10 , use Poisson distribution to calculate the approximate number of packets containing no defective, one defective and two defective blades respectively in a consignment of 10,000 packets.
c. In a normal distribution, 31% of items are under 45 and 8% are over 64 . Find the mean and standard deviation, given $\phi(0.5)=0.19$ and $\phi(1.4)=0.42$.

UNIT - IV

7 a. The joint probability function for two discrete random variables X and Y is given by $f(x, y)=c(2 x+y)$ where x and y are integral values such that $0 \leq x \leq 2,0 \leq y \leq 3$ and
b. The joint distribution of two random variables X and Y is given by,

X	1	3	9
2	$\frac{1}{8}$	$\frac{1}{24}$	$\frac{1}{12}$
4	$\frac{1}{4}$	$\frac{1}{4}$	0
6	$\frac{1}{8}$	$\frac{1}{24}$	$\frac{1}{12}$

Find marginal distributions of X and Y and evaluate $\operatorname{COV}(X, Y)$ and $\mathrm{e}(X, Y)$.
c. Define; i) Stochastic matrix (ii) Regular stochastic matrix.

Find the fixed probability vector of the regular stochastic matrix: $A=\left[\begin{array}{ccc}1 / 2 & 1 / 4 & 1 / 4 \\ 1 / 2 & 0 & 1 / 2 \\ 0 & 1 & 0\end{array}\right]$

8 a. Solve by Gauss-Seidal method, the equation:
$3 x+20 y-z=-18,20 x+y-2 z=17,2 x-3 y+20 z=25$
with initial approximation $(x, y, z)=(0,0,0)$ (Perform three iterations).
b. Solve by Relaxation method: $5 x+2 y+z=12, x+4 y+2 z=15, x+2 y+5 z=20$.
c. Find the largest Eigen value and the corresponding Eigen vector of $\mathrm{A}=\left[\begin{array}{ccc}25 & 1 & 2 \\ 1 & 3 & 0 \\ 2 & 0 & -4\end{array}\right]$ by taking
initial vector as $\left[\begin{array}{lll}1 & 0 & 0\end{array}\right]^{T}$ using power method (Perform four iterations).

UNIT - V

9 a. Find the extremal of the functional $\int_{0}^{\pi / 2}\left[\left(y^{\prime}\right)^{2}-y^{2}+4 y \cos x\right] d x, y(0)=y\left(\frac{\pi}{2}\right)=0$.
b. Find the geodesics on a right circular cylinder of radius " a ".

7
c. Find the path on which a particle in the absence of friction, will slide from one point to another in the shortest time under the action of gravity.
10 a . Obtain the series solution of the equation $\frac{d^{2} y}{d x^{2}}-y=0$.
b. Solve the Bessel's differential equation $x^{2} y^{\prime \prime}+x y^{\prime}+\left(x^{2}-n^{2}\right) y=0$.
c. Express the polynomial $2 x^{3}-x^{2}-3 x+2$ in terms of Legendre polynomials.

