PISMAES4
 U.S.N

 P.E.S. College of Engineering, Mandya - 571 401.

 (An Autonomous Institution affiliated to VTU, Belagat).

 Fourth Semester, B.E. - Semester End Examination; May / June - 2019.

 Engineering Mathematics - 1V

 (Common to EE, EC, CS&E, IS&E Branches)

 Time: 3 hrs

 Note: Answer FIVE full questions, selecting ONE full question from each unit.

 0

 1

 a. Using Bisection method, find a approximate root of the equation sin
$$x = \frac{1}{2}$$
 that lies between $x = 1$ and $x = 1.5$ (measured in radians). Carryout computations up to the fourth stage.

 b. Find a real root of the equation $\cos x = xe'$ using the Regula-Falsi method. Perform three iterations.
 7

 c. Using Newton-Raphson method, find the real root of $x \log_{10} x = 1.2$. Perform four iterations.
 7

 2
 Using Runge-Kuua method of fourth order, find $y(0.2)$ for the equation $\frac{dy}{dx} = x - y^2, y(0) = 1$ taking $h = 0.1$.
 6

 b. Using Runge-Kuua method to compute $y(1.4)$ correct to four decimal places given $\frac{dy}{dx} = x^2 + \frac{1}{4}$ and the following data: $y(1) = 2, y(1.1) = 2.2156, y(1.2) = 2.4649, y(1.3) = 2.7514.
 7

 3 a. Define a vector space with a suitable example.
 6
 6

 b. Find the dimension and basis of the subspace spanned by the vectors $(2, -3, 1), (3, 0, 1), (0, 2, 1)$ and $(1, 1, 1)$ of $V_3(R)$.
 7

 c. Find linear transformatio$

b. Using Relaxation method, solve the system of equations: 12x + y + z = 31, 2x + 8y - z = 24, 3x + 4y + 10z = 58

7

P15MAES41

c. Find the dominant Eigen value and the corresponding Eigen vector of the matrix

 $A = \begin{bmatrix} 6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3 \end{bmatrix}$ by power method, taking the initial Eigen vector [1, 1, 1]'. Carryout 7

five iterations.

UNIT - III

5 a.	Show that $f(z) = \sin z$ is analytic. Hence find its derivative.	6
b.	Construct the analytic function $f(z)$ whose real part $u = e^{-x} \left[\left(x^2 - y^2 \right) \cos y + 2xy \sin y \right]$.	7
c.	Discuss the transformation $W = e^z$.	7
6 a.	Evaluate $\int_{C} \overline{Z} dz$ where C represents the following paths :	
	i) Straight line from $-i$ to i	6
	ii) The right half of the unit circle $ Z = 1$ from $-i$ to i	
b.	Expand $f(z) = \frac{2z+3}{(z+1)(z-2)}$ in a Laurent's series valid for the regions:	7
	i) $ z < 1$ ii) $1 < z < 2$ iii) $ z > 2$	
0	Using Couphy's Residue theorem evaluates	

c. Using Cauchy's Residue theorem, evaluate:

$$\oint_{C} \frac{\sin \pi z^{2} + \cos \pi z^{2}}{(z-1)^{2} (z-2)} dz \quad \text{where } C : |z| = 3.$$
7

UNIT - IV

7 a.	Compute skewness and kurtosis if the first four moments of the frequency distribution of	6
	f(x) about the value $x = 4$ are respectively 1, 4, 10 and 45.	0

b. Fit a straight line of the form y = ax + b for the data given below using the method of least squares:

x	5	10	15	20	25
у	16	19	23	26	30

c. Obtain the lines of regression and hence find the coefficient of correlation for the data:

x	1	3	4	2	5	8	9	10	13	15
у	8	6	10	8	12	16	16	10	32	32

8 a. A random variable *x* has the following probability function for various values of *x*

x	0	1	2	3	4	5	6	7
$\mathbf{P}(x)$	0	k	2 <i>k</i>	2k	3 <i>k</i>	k^2	$2k^2$	$7k^2+k$

i) Find k ii) Evaluate P(x < 6), $P(x \ge 6)$, $P(3 < x \le 6)$

7

7

6

Page No... 3

b. The probability that a pen manufactured by a factory to be defective is $\frac{1}{10}$. If 12 such pens are manufactured what is the probability that;

i) Exactly 2 are defective ii) At least 2 are defective iii) None of them are defective

c. The marks of 1000 students in an examination follows a normal distribution with mean 70 and standard deviation 5. Find the number of students whose marks will be:
i) Less than 65 ii) More than 75 iii) Between 65 and 75

Given $\phi(1) = 0.3413$.

UNIT - V

9 a. Using two random variables *X* and *Y* as follows:

XY	0	1	2	3
0	0	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$
1	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$	0

i) Determine the distributions of X and Y

ii) Determine the joint distribution of X and Y

iii) Calculate E(X) and E(Y)

- b. Define the following :
 - i) Probability vector
 - ii) Stochastic matrix
 - iii) Regular stochastic matrix
 - iv) Fixed probability vector.

c. Show that the matrix
$$P = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ \frac{1}{2} & \frac{1}{2} & 0 \end{bmatrix}$$
 is a regular stochastic matrix. 7

Also determine the associated unique fixed probability vector.

10 a. Obtain a series solution of
$$y'' - xy' + y = 0$$
.

b. Prove that:

i)
$$J_{\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \sin x$$
 ii) $J_{-\frac{1}{2}}(x) = \sqrt{\frac{2}{\pi x}} \cos x$ 7

c. Express $f(x) = x^3 + 2x^2 - 4x + 5$ in terms of Legendre polynomials.

* * * *

7

7

6

7

6

7