P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)

Fourth Semester, B.E. - Semester End Examination; May / June - 2019
 Engineering Mathematics - IV
 (Common to EE, EC, CS\&E, IS\&E Branches)

Time: 3 hrs
Max. Marks: 100
Note: Answer FIVE full questions, selecting ONE full question from each unit.
UNIT - I
1 a. Using Bisection method, find a approximate root of the equation $\sin x=\frac{1}{x}$ that lies between $x=1$ and $x=1.5$ (measured in radians). Carryout computations up to the fourth stage.
b. Find a real root of the equation $\cos x=x e^{x}$ using the Regula-Falsi method. Perform three iterations.
c. Using Newton-Raphson method, find the real root of $x \log _{10} x=1.2$. Perform four iterations.

2 a. Using modified Euler's method find $y(0.2)$ correct to four decimal places solving the equation $\frac{d y}{d x}=x-y^{2}, y(0)=1$ taking $h=0.1$.
b. Using Runge-Kutta method of fourth order, find $y(0.2)$ for the equation $\frac{d y}{d x}=\frac{y-x}{y+x}, y(0)=1 \quad$ taking $h=0.1$.
c. Apply Milne's method to compute $y(1.4)$ correct to four decimal places given $\frac{d y}{d x}=x^{2}+\left(\frac{y}{2}\right)$ and the following data: $y(1)=2, y(1.1)=2.2156, y(1.2)=2.4649$, $y(1.3)=2.7514$.

UNIT - II

3 a. Define a vector space with a suitable example.
b. Find the dimension and basis of the subspace spanned by the vectors $(2,-3,1),(3,0,1),(0,2,1)$ and $(1,1,1)$ of $V_{3}(R)$.
c. Find linear transformation. $T: V_{2}(R) \rightarrow V_{2}(R)$ such that $T(1,2)=(3,0)$ and $T(2,1)=(1,2)$.

4 a. Apply Gauss-Seidel iteration method to solve the system of equations: $x+y+54 z=110 ; 27 x+6 y-z=85 ; 6 x+15 y+2 z=72$. Obtain the solution up to an accuracy of three decimal places by carrying three iterations.
b. Using Relaxation method, solve the system of equations:
$12 x+y+z=31,2 x+8 y-z=24,3 x+4 y+10 z=58$
c. Find the dominant Eigen value and the corresponding Eigen vector of the matrix $A=\left[\begin{array}{ccc}6 & -2 & 2 \\ -2 & 3 & -1 \\ 2 & -1 & 3\end{array}\right]$ by power method, taking the initial Eigen vector $[1,1,1]^{\prime}$. Carryout
five iterations.

UNIT - III

5 a. Show that $f(z)=\sin z$ is analytic. Hence find its derivative.
b. Construct the analytic function $f(z)$ whose real part $u=e^{-x}\left[\left(x^{2}-y^{2}\right) \cos y+2 x y \sin y\right]$.
c. Discuss the transformation $W=e^{z}$.

6 a. Evaluate $\int_{C} \bar{Z} d z$ where C represents the following paths :
i) Straight line from $-i$ to i
ii) The right half of the unit circle $|\mathrm{Z}|=1$ from $-i$ to i
b. Expand $f(z)=\frac{2 z+3}{(z+1)(z-2)}$ in a Laurent's series valid for the regions:
i) $|z|<1$
ii) $1<|z|<2$
iii) $|z|>2$
c. Using Cauchy's Residue theorem, evaluate:

$$
\oint_{C} \frac{\sin \pi z^{2}+\cos \pi z^{2}}{(z-1)^{2}(z-2)} d z \quad \text { where } \mathrm{C}:|\mathrm{z}|=3
$$

UNIT - IV

7 a. Compute skewness and kurtosis if the first four moments of the frequency distribution of $f(x)$ about the value $x=4$ are respectively $1,4,10$ and 45 .
b. Fit a straight line of the form $y=a x+b$ for the data given below using the method of least squares:

x	5	10	15	20	25
y	16	19	23	26	30

c. Obtain the lines of regression and hence find the coefficient of correlation for the data:

x	1	3	4	2	5	8	9	10	13	15
y	8	6	10	8	12	16	16	10	32	32

8 a. A random variable x has the following probability function for various values of x

x	0	1	2	3	4	5	6	7
$\mathrm{P}(x)$	0	k	$2 k$	$2 k$	$3 k$	k^{2}	$2 k^{2}$	$7 k^{2}+k$

i) Find $k \quad$ ii) Evaluate $\mathrm{P}(x<6), \mathrm{P}(x \geq 6), \mathrm{P}(3<x \leq 6)$
b. The probability that a pen manufactured by a factory to be defective is $\frac{1}{10}$. If 12 such pens are manufactured what is the probability that;
i) Exactly 2 are defective
ii) At least 2 are defective
iii) None of them are defective
c. The marks of 1000 students in an examination follows a normal distribution with mean 70 and standard deviation 5 . Find the number of students whose marks will be:
i) Less than 65
ii) More than 75
iii) Between 65 and 75

Given $\phi(1)=0.3413$.

UNIT - V

9 a. Using two random variables X and Y as follows:

$X-Y$	0	1	2	3
0	0	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$
1	$\frac{1}{8}$	$\frac{1}{4}$	$\frac{1}{8}$	0

i) Determine the distributions of X and Y
ii) Determine the joint distribution of X and Y
iii) Calculate $E(X)$ and $E(Y)$
b. Define the following :
i) Probability vector
ii) Stochastic matrix
iii) Regular stochastic matrix
iv) Fixed probability vector.
c. Show that the matrix $P=\left[\begin{array}{ccc}0 & 1 & 0 \\ 0 & 0 & 1 \\ \frac{1}{2} & \frac{1}{2} & 0\end{array}\right]$ is a regular stochastic matrix.

Also determine the associated unique fixed probability vector.
10 a . Obtain a series solution of $y^{\prime \prime}-x y^{\prime}+y=0$.
b. Prove that:
i) $J_{\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \sin x$
ii) $J_{-\frac{1}{2}}(x)=\sqrt{\frac{2}{\pi x}} \cos x$
c. Express $f(x)=x^{3}+2 x^{2}-4 x+5$ in terms of Legendre polynomials.

