

- What is Fermi energy? Write an expression for Fermi factor. Discuss the variations of Fermi 7 b. factor with temperature and energy.
- c. Calculate the intrinsic carrier density and conductivity of germanium semiconductor at 300 K. Given that $\mu_e = 0.37 \text{ m}^2/\text{Vs}$, $\mu_h = 0.16 \text{ m}^2/\text{Vs}$ and E_g of $G_e = 0.7 \text{ eV}$. Assuming that $m_e = m_h = m_e$.

5

P15PH12/22 Page No 2		
6 a.	Derive an expression for carrier concentration of electrons in an intrinsic semiconductor.	8
b.	Define law of mass action. Derive an expression for Fermi level in an intrinsic semiconductor.	7
c.	Find the temperature at which there is 1% probability that a state with energy 0.5 eV above Fermi energy is occupied.	5
UNIT - IV		
7 a.	Describe the various quantum structures with figure and density of state equations.	8
b.	Discuss type-I and type-II superconductors.	7
с.	Write a note on carbon nanotubes.	5
8 a.	Explain BCS theory and Meissonier effect.	8
b.	Explain the working of scanning tunneling microscope with the help of a neat diagram.	7
с.	A superconducting tin has a critical field of 306 gauss at Ok (H_o) and 217 gauss (H_c) at 2 K. Find	5
	the critical temperature of superconducting tin.	5
UNIT - V		
9 a.	Describe construction and working of semiconductor diode laser.	5
b.	Define angle of acceptance. Obtain an expression for numerical aperture in an optical fiber.	5
с.	What is ultrasonics? Mention its applications.	5
d.	A cinema hall has a volume of 7500 m^3 . It is required to have reverberation time of 1.5 sec. What should be the total absorption in the hall?	5
10 a.	Explain laser welding, cutting and drilling process with necessary diagram.	5
b.	An optical fiber has clad of refractive index 1.50 and numerical aperture 0.39, Find the refractive	_
	index of the core and the acceptance angle.	5
c.	Explain with a neat diagram how a flaw in solid material is detected by non-destructive method using ultrasonics.	5
d.	Mention and explain the basic requirements of the good auditorium.	5

* * * *