P.E.S. College of Engineering, Mandy - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Fourth Semester, B.E. - Automobile Engineering
Semester End Examination; May/June - 2019
Heat Transfer
Time: 3 hrs
Max. Marks: 100
Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

1 a. State the laws governing three basic modes of heat transfer.
b. What is the thickness required of a monsory wall having thermal conductivity of $0.75 \mathrm{~W} / \mathrm{m}-\mathrm{K}$, is the heat transfer rate is to be 80% of the rate through another wall having thermal conductivity of $0.25 \mathrm{~W} / \mathrm{m}-\mathrm{K}$ and a thickness of 100 mm ? Both walls are subjected to some temperature difference.
c. Write the 3D heat conduction equation in Cartesian and Spherical coordinates and explain the terms involved.
2 a . What do you mean by boundary condition of $1^{\text {st }}, 2^{\text {nd }}$ and $3^{\text {rd }}$ kind?
b. Consider a solid cylinder of radius R and height Z . The outer curved surface the cylinder is subjected to a uniform heating electrically at a rate of $q_{0} \mathrm{~W} / \mathrm{m}^{2}$. Both the circular surfaces of the cylinder are exposed to on environment at a uniform temperature T_{∞} with a surface heat transfer coefficient h. Write the mathematical formulation of the boundary conditions for the solid cylinder.
c. Consider a rectangular plate as in Fig. Q 2(c). The plate is generating heat at a uniform rate of $q^{111} \mathrm{~W} / \mathrm{m}^{3}$. Write the mathematical formulation to determine one dimensional steady state temperature distribution in the plate.
 physical significance.
b. A plane composite wall consists of three different layers in perfect contact. The first layer is 5 cm thick with $\mathrm{K}=20 \mathrm{~W} / \mathrm{m}-\mathrm{K}$. The second layer is 10 cm thick with $\mathrm{K}=100 \mathrm{~W} / \mathrm{m}-\mathrm{K}$. The outer surface of the first layer is in contact with a fluid at $400^{\circ} \mathrm{C}$ with a surface heat transfer coefficient of $25 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}$, while the outer surface of third layer is exposed to an ambient at $30^{\circ} \mathrm{C}$ with a surface heat transfer coefficient of $15 \mathrm{~W} / \mathrm{m}^{2}-\mathrm{K}$. Draw the equivalent thermal circuit indicating the numerical values of all the thermal resistance and calculate the heat flow through composite wall and over all heat transfer coefficient.

4 a. Derive an expression for temperature distribution for rectangular fin with tip-insulated.
b. A steel rod of $12 \mathrm{~mm} \times 12 \mathrm{~mm}$ with a length of 159 mm protrudes into air at $35^{\circ} \mathrm{C}$ from furnace wall at $200^{\circ} \mathrm{C}$. The thermal conductivity of the material is $51.9 \mathrm{~W} / \mathrm{m}-\mathrm{K}$ and connective heat transfer coefficient is $22 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Determine; i) The end temperature, assuming the end insulated
ii) The temperature at 80 mm distance from the wall

UNIT - III

5 a . Derive an expression for instantaneous heat transfer and total heat transfer for lumped heat analysis.
b. Aluminium rod of 5 cm diameter and 1 meter long at $200^{\circ} \mathrm{C}$ is suddenly exposed to a temprature (convective atmosphere) of $70^{\circ} \mathrm{C}$. Calculate the temperature at a radius of 1 cm and heat loss per metre length of the rod, one minute after the cylinder is exposed to the environment.

6 a. With the help of dimensional analysis, derive an expression which relates Reynold's number, Nusselt number and Prandtl number.
b. Air stream at $30^{\circ} \mathrm{C}$ is moving at $0.5 \mathrm{~m} / \mathrm{s}$ across at 100 W electric bulb at $130^{\circ} \mathrm{C}$. If the bulb is approximated by a 60 mm diameter sphere, estimate the rate of heat transfer.

UNIT - IV

7 a . Explain the physical significance of :
i) Grashoff number
ii) Prandtl number
iii) Nusselt number
iv) Reynold's number
b. A 5 cm diameter pipe carrying hot water is exposed to the ambient air at $15^{\circ} \mathrm{C}$. If the outer surface of the pipe is at $65^{\circ} \mathrm{C}$. Find the rate of heat loss from 1 m pipe length, when?
i) The pipe is horizontal
ii) The pipe is vertical

8 a. Derive an expression for LMTD for counter flow heat exchanger.
b. Two shell pass 4 tube counter flow heat exchanger has water on the shall side and brine on the tube side water is cooled from $18^{\circ} \mathrm{C}$ to $6^{\circ} \mathrm{C}$, with brine entering at $-1^{\circ} \mathrm{C}$ and leaving at $3^{\circ} \mathrm{C}$. The overall heat transfer coefficient is $600 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Calculate the heat transfer area required for a designed heat load of 24000 W .

UNIT - V

9 a. Explain the following :
i) Blackbody
ii) Kirchhoff's law
iii) Stefan Boltzmann law
iv) Wein's displacement law
v) Planck's law
b. Two parallel plates at $T_{1}=900^{\circ} \mathrm{K}$ and $\mathrm{T}_{2}=500^{\circ} \mathrm{K}$ have emmisivities $\epsilon_{1}=0.6$ and $\epsilon_{2}=0.9$ respectively. A radiation shield having on emisivity $\epsilon_{31}=0.15$ on one and emmisivtiy $\epsilon_{32}=0.66$ on the otherside is placed between the plates. Calculate the heat transfer rate by radiation per source meter with and without shield.

10 a. For a black body enclosed in a hemispherical space, show that emissive power of the black body is π times the intensity of radiation.
b. Two large parallel plates are at $1000^{\circ} \mathrm{K}$ and $800^{\circ} \mathrm{K}$. Determine the heat exchange per unit area, when?
i) The surface are black
ii) The hot surface has on emissivity of 0.9 and cold 0.6
iii) A large plate of emisivity 0.1 is inserted between them. Also find the percentage reduction in heat transfer because of introduction of large plate

