

P.E.S. College of Engineering, Mandya - 571 401

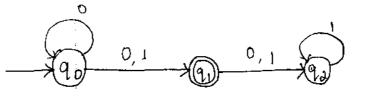
(An Autonomous Institution affiliated to VTU, Belagavi) Fourth Semester, B.E. - Computer Science and Engineering Semester End Examination; May / June - 2019 Theory of Computation

Time: 3 hrs

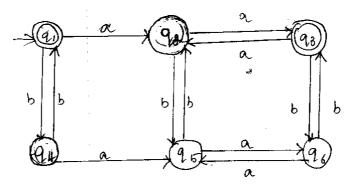
Max. Marks: 100

10

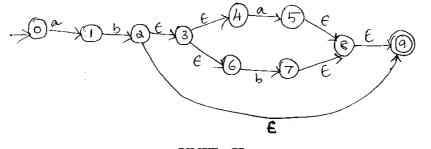
10


10

10


Note: Answer *FIVE* full questions, selecting *ONE* full question from each unit.

UNIT - I


- 1 a. Define DFSM for the following :
 - i) $L = \{w \in \{a, b\}^* : w \text{ has } bbab \text{ as a substring } \}$
 - ii) $L = \{w \in \{a z\}^* : \text{ all five vowels occur in } w \text{ in alphabetical order} \}$
 - b. Design the following NFA to its equivalent DFA,

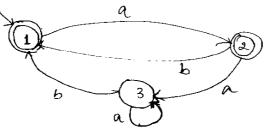
2 a. Minimize the following machine M,

b. Convert the following NDFSM to DFSM,

UNIT - II

- 3 a. Give regular expression to describe the following languages :
 - i) $L = \{w \in \{a, b\}^* : \text{Every } a \text{ in } w \text{ is immediately preceded and followed by } b\}$
 - ii) $L = \{w \in \{a, b\}^* : |w| \text{ is even}\}$ iii) $L = \{w \in \{a, b\}^* : w \text{ has both } aa \text{ and } aba \text{ as substring}\}$?
 - b. Construct FSM for the given regular expressions :

i) $(ab)^* (aab)^*$ ii) $(b \cup ab)^*$


5

6

P17CS43

9

c. Convert the following FSM to regular expression using state elimination method :

- 4 a. State and explain Kleene's theorem for regular expression. 10 Prove that the regular languages are closed under difference. 5 b. Prove that the language: $L = \{ww^R : w \in \{a, b\}\}$ are not regular languages. c. 5 UNIT - III Define CFG. Construct CFG for the following languages : 5 a. 7 i) $L = \{a^i b^j c^k | k = i + j, \quad i \ge 0, \quad j \ge 0\}$ ii) $L = \{a^n b^m c^k | n + 2m = k, \quad n, \quad m \ge 0\}$ Consider the grammar: $E \rightarrow +EE|*EE|-EE|x|y|$. Find the left most and right most derivation for b. 5 the string +*-x y x y and write the parse tree. c. Convert the following grammar into CNF: 8 $S \rightarrow ABC$ $A \rightarrow ac | D$ $B \rightarrow bB \in |A|$ $C \rightarrow Ac \in |Cc|$ D→aa 6 a. Prove that the context free languages are closure under union, concatenation and Kleene star 8 with example. b. State and prove pumping lemma for CFG and prove that the following languages are not CFL: 12 $L = \left\{ wcw \mid w \in \left\{ a, b \right\}^* \right\}$ UNIT - IV
- 7 a. Design the pushdown automata for the language $L = \left\{ wcw^R / w \in \{a, b\}^* \right\}$ Also, draw the transition diagram. Show the string acceptance for the string w = `abacaba'
- b. Define Deterministic Pushdown Automata with conditions and give an example. 6
- 8 a. Design Pushdown Automata for the language $L = \{a^n b^n | n \ge 0\}$. Show the string acceptance for w = `aabb'.
 - b. Obtain PDA from the following grammar : i) $S \rightarrow aABC$ ii) $A \rightarrow aB/a$ iii) $B \rightarrow bA/b$ iv) $C \rightarrow a$ 10

UNIT - V

- 9 a. Construct a Turing machine to accept the language: $L = \{a^n b^n \mid n \ge 0\}$. Draw the transition table. 10
 - b. Construct a Turing machine to recognize the language: $L = \{0^n 1^n | n \ge 0\}$. Show that string 10 acceptance for the string w = 0011.
- 10. Write a short notes on the following :
 - i) Undecidable problems ii) Recursively enumerable languages 20
 - iii) Multi-track turing machine iv) Post correspondence problem