\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Fourth Semester, B.E. - Electronics and Communication Engineering Semester End Examination; May/June - 2019

Digital Signal Processing
Max. Marks: 100
Time: 3 hrs
Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

1 a. Given $X(\mathrm{~K})=\{1,0,1,0\}$ compute its 4-point IDFT $x(n)$.
b. Compute 4-point DFT of the following sequences using Matrix transformation representation :
i) $x(n)=\cos \pi n \quad 0 \leq n \leq 3$
ii) $x(n)=\sin \frac{\pi n}{2} \quad 0 \leq n \leq 3$
c. A filter has impulse response $h(n)=\{1,0,-1\}$ if an input signal $x(n)=(n+1) 0 \leq n \leq 9$ is passed through the filter, determine its output response $y(n)$ using overlap add method.
Take length of input section to be 4 .
2 a.
i) If $x(n)=\{1,2,0,3\}$ find $x_{1}(n)=x((n-3))_{4}$
ii) If $x(n)=\delta(n)+2 \delta(n-5)$ and $x(K)$ as its DFT, find $y(n)$ given,

$$
y(K)=X(K) e^{\frac{-j 2 \pi}{10}} 3 k
$$

b. State and prove linearity property of DFT.
c. An input sequence $x(n)=(n+1) \quad 0 \leq \mathrm{n} \leq 9$ is passed through a filter with impulse response $h(n)=\{1,0,-1\}$.Determine the output $y(n)$ using overlap save method. Use 6-point circular convolution in the computations.

UNIT - II

3 a. Explain the concept of Butterfly operation, Inplace computation and Bit reversed as applicable to FFT.
b. Compute the 8 -point DFT of the sequence $x(n)=\cos \frac{n \pi}{2}$ using the DIT-FFT algorithm and required flow graph. Show all intermediate computations.
c. Find the DFT of the sequence $x(n)=\{4,3,2,1\}$ using DIF-FFT algorithm.

4 a. Compare DIT and DIF-FFT algorithms for similarities and differences.
b. Derive the scheme to compute 2 N -point DFT of a real valued sequence using an N-point FFT algorithm only once.
c. Compute the IDFT of a 8-point real sequence given five DFT samples as below using DIF-FFT
algorithm: $X(k)=\{7,-0.707-j 0.707,-j, 0.707-j 0.707,1\}$
UNIT - III
5 a . Design a linear-phase FIR low pass filter with the following desired frequency response :
$H_{d}\left(e^{j w}\right)=\left\{\begin{array}{ll}e^{-j 2 w} & 0 \leq|w| \leq \frac{\pi}{4} \\ 0 & \frac{\pi}{4}<|w| \leq \pi\end{array}\right.$. Use a hamming window. Also determine $H\left(e^{j w}\right)$.
b. A linear phase low-pass FIR filter satisfying the following specification need to be designed:

Pass band: $0-5 \mathrm{kHz}$, sampling frequency : $\mathrm{F}_{\mathrm{s}}=18 \mathrm{kHz}$, Filter length : $\mathrm{M}=9$
Determine the filter coefficient using Frequency sampling method.
6 a. Design a linear-phase low-phase filter given that: $H_{d}\left(e^{j w}\right)=\left\{\begin{array}{cl}e^{-j 3 w} & 0 \leq|w| \leq \frac{\pi}{2} \\ 0 & \frac{\pi}{2}<|w| \leq \pi\end{array}\right.$ using the Bartlett worth window. Determine the impulse response coefficient of the filter and $H\left(e^{j w}\right)$.
b. A low-pass digital filter has the desired frequency response as below :
$H_{d}\left(e^{j i w}\right)=\left\{\begin{array}{cc}e^{-j 3 w} & 0 \leq|w| \leq \frac{\pi}{2} \\ 0 & \frac{\pi}{2}<|w| \leq \pi\end{array}\right.$
Determine the filter coefficients $h(n)$ for $\mathrm{M}=7$ using frequency sampling technique.

UNIT - IV

7 a. Discuss the advantages and disadvantages of Impulse Invariant method.
b. Transform the analog filter transfer function $H_{a}(s)=\frac{4 s+7}{s^{2}+5 s+4}$ into a digital filter $H(z)$ using Impulse Invariant method at $F_{S}=2 \mathrm{~Hz}$
c. Design a IIR low pass Butter worth filter using Bilinear transformation for the following specifications:
Pass band: $0.8 \leq\left|H\left(e^{j w}\right)\right| \leq 1 \quad|w| \leq 0.2 \pi$; Stop band: $\left|H\left(e^{j w}\right)\right| \leq 0.2 \quad 0.6 \pi \leq|w| \leq \pi$; Assume $T=1 s$.
8 a. Discuss the advantages and disadvantages of Bilinear-Transformation method.
b. Derive the relationship between analog and digital frequencies in a Bilinear Transformation.
c. Design an IIR low pass Butter worth filter using the Impulse-Invariant method for the following specification.
Pass band : $0.8 \leq\left|H\left(e^{j w}\right)\right| \leq 1 \quad|w| \leq 0.2 \pi$; Stop band: $\left|H\left(e^{j w}\right)\right| \leq 0.2 \quad 0.6 \pi \leq|\omega| \leq \pi$; Assume T = 1 s . UNIT - V
9 a. Check whether following filter function has linear phase or Not, if yes, obtain a linear phase structure for the same $H(Z)=1+\frac{1}{2} Z^{-1}+\frac{1}{3} Z^{-2}+\frac{1}{6} Z^{-3}+\frac{1}{3} Z^{-4}+\frac{1}{2} Z^{-5}+Z^{-6}$
b. Obtain the cascade and parallel form realization of the LIT system represented by difference equation $y(n)=\frac{5}{8} y(n-1)-\frac{1}{16} y(n-2)+x(n)-3 x(n-1)+3 x(n-2)-x(n-3)$
c. Explain Linear Predictive Coding (LPC) system and its uses.

10 a. Obtain the direct form-I and II, cascade and parallel form realization structures for the following system : $y(n)=-0.1 y(n-1)+0.7^{2} y(n-2)+0.7 x(n)-0.25 x(n-2)$
b. A filter response is given by, $H(z)=\sum_{k=0}^{5}(2 Z)^{-k}$. Obtain the direct form structure and its difference equation representation.
c. Explain speech recognition system with neat block diagram.

