\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Second Semester, B.E. - Semester End Examination; May / June - 2019
Basic Electronics
(Common to All Branches)
Time: 3 hrs
Max. Marks: 100
Note: Answer FIVE full questions, selecting $\boldsymbol{O N E}$ full question from each unit.

UNIT - I

a. With the help of a neat circuit diagram and appropriate waveform, explain the operation of a half wave rectifier circuit.
b. Define Q-point. For a series diode configuration, explain the construction of DC load line analysis and optimum Q-point selection using circuit diagram and characteristics.
c. For the series diode configuration shown in below figure, determine V_{D}, V_{R} and I_{D}.
a. Explain the basic block diagram of a power supply.
b. Analyze the working of Zener diode as voltage regulator with fixed V_{I} and fixed R_{L}.
c. Explain the operation of a capacitor filter using centre tapped full wave rectifier circuit. Calculate the ripple of a capacitor filter for a peak rectified voltage of 30 V . If capacitor $\mathrm{C}=50 \mu \mathrm{~F}$ and a
 load current of 50 mA .

UNIT - II

a. Describe the construction of n-channel depletion type MOSFET.
b. Illustrate the working of CMOS inverter along with circuit diagram.
c. Explain the following in brief :
i) MOSFET handling
ii) V-MOS
a. With neat circuit diagram, explain the working of FET phase shift oscillator. Write the equation for frequency of oscillation.
b. Explain E-MOSFET voltage divider configuration along with equivalent circuits.
c. Describe the operation and characteristics of p-channel enhancement MOSFET with necessary diagrams.

UNIT - III

a. With the help of neat circuit diagram, derive the expression for output voltage and gain of an inverting Op-amp. Write the equivalent diagram.
b. Explain input offset voltage with necessary diagrams.
c. Design an Op-amp summing amplifier for the following set of votage and resistor :
$\mathrm{V}_{1}=1 \mathrm{~V}, \mathrm{~V}_{2}=2 \mathrm{~V}, \mathrm{~V}_{3}=3 \mathrm{~V} ; \mathrm{R}_{1}=500 \mathrm{k} \Omega, \mathrm{R}_{2}=1 \mathrm{M} \Omega, \mathrm{R}_{3}=1 \mathrm{M} \Omega$. Use $\mathrm{R}_{\mathrm{f}}=1 \mathrm{M} \Omega$.
a. Describe following types of Op-amp controlled sources:
i) Voltage controlled voltage source
ii) Current controlled voltage source
b. Explain the following Frequency parameters :
i) Gain Bandwidth
ii) Slew rate
iii) Maximum signal frequency

UNIT - IV

a. Realize the following circuits / gates :
i) AND gate using NOR gate
ii) XOR gate using NAND gate
b. Prove De-Morgan's theorem with an example.
c. Compute the following :
$(57345)_{10}=()_{16}=()_{2}$
$(47.5434)_{16}=()_{10}=()_{8}$
$(11010101.11)_{2}=()_{10}=()_{16}$
a. With the help of circuit diagram and truth table, explain the working of a full adder. 8
b. Explain the operation of 8:1 MUX. 6
c. Compute the following :
i) $(110.101)_{2}-(100.101)_{2}$ using 1's complement method
ii) $(101.101)_{2}-(100.100)_{2}$ using 2 's complement method

UNIT - V

a. With neat diagram, explain the elements of a communication sytem. 6
b. Explain the operation of super hetrodyne receiver with necessary block diagram . 8
c. Describe the working of monochrome cathode ray tube with neat figure. 6
a. Distinguish between Amplitude Modulation and Frequency Modulation . 8
b. Describe the working of Piezoelectric transducer . 6
c. Describe the working of Hall-effect transducer with neat figure. 6

