P.E.S. College of Engineering, Mandya - 571401
 (An Autonomous Institution affiliated to VTU, Belagavi)
 Fourth Semester, B.E. - Electronics and Communication Engineering Semester End Examination; May / June - 2019
 Analog and Digital Communication

Time: 3 hrs
Max. Marks: 100
Note: i) Answer FIVE full questions, selecting ONE full question from each unit.
ii) Missing data, if any, may be suitably assumed.

UNIT - I

1 a. Explain the generation of DSBSC waves using,
b. Explain with the help of a neat sketch, how square law modulator is used to generate AM?
c. An audio frequency signal $5 \sin 2 \pi(1000) t$ is used to amplitude modulate a carrier of $100 \sin 2 \pi\left(10^{6}\right) t$. Assume modulation index as 0.4 . Find;
i) Side band frequencies
ii) Amplitude of each side band
iii) B.W. required
iv) Total power delivered to a load of 100Ω

2 a. Distinguish between FM and PM wave.
b. Describe with necessary equations and block diagram, the generation of narrow band FM.
c. A modulating signal $5 \cos 2 \pi 15 \times 10^{3} t$, angle modulates a carrier $A \cos w_{c} t$. Find the modulation index and the bandwidth for the FM system. Determine the change in the bandwidth and modulation index, if FM is reduced to 5 kHz . What is the conclusion of the two results?

UNIT - II

3 a. Discuss the properties of Gaussian process.
b. Define with relevant equations mean, auto correlation and auto covariance of a randomprocess $X(t)$.
c. List the properties of auto-correlation and cross-correlation function.

4 a. Describe the channels for digital communication. 7
b. With a neat block diagram, explain digital communication system.
c. Explain the Grem-Schmidt orthogonalization procedure.

UNIT - III

5 a. Explain the quadrature sampling of band pass signal with related block diagram, spectra and equations.
b. A signal $g(t)=10 \cos (20 \pi t) \cos (200 \pi t)$ is sampled at the rate of 250 samples $/ \mathrm{s}$;
i) Sketch the spectrum of the sampled signal
ii) Specify the cutoff ideal reconstruction filter so as to recover $g(t)$ from $g_{s}(t)$
iii) Specify the Nyquist rate for the signal $g(t)$
c. Explain TDM.

6 a. Derive the expression for power spectral density of NRZ bipolar format.
b. What is ISI? Derive an expression for Nyquist pulse shaping criterion for distortion less base band binary transmission.
c. Sketch the encoded waveform for the bit stream 01101100 for the following schemes :
i) NRZ unipolar
ii) RZ polar
iii) Manchester
iv) Bipolar coding

UNIT - IV

7 a. Explain with block diagrams DPCM transmitter and receiver.
b. Explain regenerative repeater in a PCM system with a block diagram.
c. A PCM system uses a uniform quantizer followed by a 7-bit encoder. The bit rate of the system is 50 M bits / s;
i) What is the message bandwidth for which the system operates satisfactorily?
ii) Determine the output SNR when a sinusoidal modulating wave of frequency 1 MHz is applied to the input
8 a . Explain the following with a neat sketch :
i) Slope overload distortion
ii) Granular noise
b. Explain Adaptive delta modulation with neat block diagram and equations.
c. A DM system with a 10 Hz sinusoidal signal with 1 V peak to peak at the input. It is sampled at 10 times the Nyquist rate;
i) What is the step size required to prevent slope overload?
ii) What is the corresponding SNR?

UNIT - V

9 a. Define BFSK. Derive probability of error for a coherent BFSK.
b. Describe the QPSK signal with its signal space characterization with a neat block diagram and explain the generation and detection of QPSK signals.
10 a . A binary data is transmitted over an AWGN channel using binary PSK at a rate of 1 MBPS. It is desired to have average probability of error $\mathrm{P}_{\mathrm{e}} \leq 10^{-4}$. Noise power spectral density is $\mathrm{N}_{0} / 2=10^{-12} \mathrm{~W} / \mathrm{Hz}$. Determine the average carrier power required at the receiver input.
Take erfc (3.5) $=0.00025$.
b. Define BPSK. With a neat block diagram, explain the generation and detection of PSK. Also draw the PSD of PSK.
c. With a neat block diagram, explain the non coherent detection of BPSK technique.

