Canalan Canalan					
P.E.S. College of Engineering, Mandya - 571 401					
(An Autonomous Institution affiliated to VTU, Belagavi)					
Fourth Semester, B.E Electronics and Communication Engineering					
Semester End Examination; May / June - 2019 Digital Design Using Verilog HDL					
Time: 3 hrs Max. Marks: 100					
Note: Answer FIVE full questions, selecting ONE full question from each unit.					
UNIT - I					
1 a.	What is meant by stopping and finishing in a simulation? Explain with an example.	6 8			
b.	Write verilog descriptions for 4-bit ripple carry full adder by making use of 1-bit full adder.				
c.	Write verilog description (data flow) of 4:1 multiplexer.	6			
2 a.	Obtain the design hierarchy for SR latch simulation.	6			
b.	Write a verilog description for module D given by, $y = (ab + c)$ with gate delay AND = 4	6			
	and $OR = 5$.				
c.	Obtain verilog description (data flow) for edge-triggered D flip flop.	8			
UNIT - II					
3 a.	Write a verilog description (behavioral) of 4:1 MUX.	8			
b.	Using wait statement, design a level sensitive latch with clock d as Input and $q = d$	6			
	when $clock = 1$.				
c.	Obtain verilog code for parity calculator using 'Function' with 32-bit address.	6			
4 a.	Write a verilog description for 4-bit counter (behavioral).				
b.	Design 4 to 1 MUX using if and else statements.	6			
c.	Write a verilog code (using 'Function') for 32- bit left / right shifter.	8			
UNIT - III					
5 a.	Analyze the use of VCD file in the debug process with neat block diagram.	8			
b.	Define setup and hold time. Explain with an example.	6			
c.	Obtain the switch level verilog descriptions of 2 to 1 MUX.	6			
6 a.	Design a positive edge triggered D flip flop with asynchronous clear and present using assign statement.	6			
b.	Explain delay back annotation with the help of flow diagram.	8			
c.	Obtain the switch level verilog code for CMOS flip flop.	6			
UNIT - IV					
7 a.	Design a negative edge-triggered JK flip flop with asynchronous preset and clear as a UDP.	6			
b.	Obtain the general process of adding and invoking a user defined system task.	6			
c.	What are the limitations of logic synthesis?	8			

P17EC43		Page No 2		
8 a.	Design a level sensitive D latch with preset, input d clock and output q .		6	
b.	Discuss the role of access and utility routines with block diagram.		6	
c.	Analyze the basic computer Aided logic synthesis process.		8	
UNIT - V				
9 a.	Interpret verilog constructs and translate it to logic gates.		8	
b.	Explain the various components in traditional verification flow.		12	
10 a.	Obtain the finite state machine for news paper vending machine.		12	
b.	Explain the various components of a functional verification environment.		8	

* * * *