U.S.N					i l
0.8.1					i l

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Fourth Semester, B.E. - Electronics and Communication Engineering Semester End Examination; May/June - 2019 Microcontroller

Time: 3 hrs Max. Marks: 100

 ${\it Note}$: Answer ${\it FIVE}$ full questions, selecting ${\it ONE}$ full question from each unit.

UNIT - I

	0112 2							
1 a.	What is Embedded system? Describe the different approaches to Embedded system.	6						
b.	Explain different types of memory used in microcontroller.							
c.								
	for each.							
2 a.	a. Write the block diagram of MSP430F2013 and explain each block.							
b.	b. Discuss how the memory is mapped in F2013 controller?							
c.	Differentiate between Von-Neumann and Harvard architecture.	4						
	UNIT - II							
3 a.	With example, explain the operations of stack and stack pointer in MSP430 microcontroller.	6						
b.	b. What is addressing mode? List the different addressing modes used in MSP430 and explain							
	each with an example.	10						
c.	c. Write the syntax and function of the following instruction:							
	i) dadc.w ii) bis.w iii) jn	4						
4 a.	4 a. Write the machine code for the following instructions:							
	i) add.w, R5, R6 ii) mov.w @R5+, 0x1020 (R12) iii) mov.b #4, R6	6						
b.	Using pointer, write a C function to copy a string. Also write the subroutine using MSP430							
	instructions to copy source string starting in R14 to destination starting in R12.	6						
c.	c. Write the simplified block diagram of the clock module of MSP430F2XX family.							
	Explain each block.	8						
	UNIT - III							
5 a.	What is subroutine? Describe what happens when a subroutine is cal-by?	5						
b.	Explain the different ways for storing the local variables in subroutine.	5						
c.	Write a subroutine in MSP430 assembly language to give delay of 'n' times the 0.1 s delay.							
	Consider outer big loop and inner little loop with loop count value of 130 and 100							
	respectively to give 0.1 s delay. Take; $n = 5$ and it must be pass as a parameter from calling	10						
	routine. Use stack to store parameter and loop count value.							
6 a.	What is an interrupt? Describe the steps happens when an interrupt is requested.	8						

	P17EC45 Page No 2						
b.	Using MSP430, write an assembly language program to toggle LED's with period of 0.5 s						
	using interrupt generated by Timer-A in UP mode.	8					
c.	Explain the various low-power modes of operation.	4					
UNIT - IV							
7 a.	What is watchdog timer? Give example. Explain watchdog timer control register WDTCTL.	10					
b.	With block diagram and control register, explain basic Timer 1.	10					
8 a.	Sketch the output from channels 0 and 1 of timer-A in UP mode and analyze the edge aligned						
	PWM in the UP mode configuration of timer-A.	10					
b.	Draw the simplified block diagram of timer-A showing the timer block and capture compare	10					
	channel 1. Explain with control register.						
UNIT - V							
9 a.	Analyze the operation of comparator A ⁺ with circuit diagram and equations.	10					
b.	Explain the practical issues with respect to ADC.	10					
10 a.	a. Write the circuit diagram of 4-bit charge redistribution successive approximation ADC.						
Explain its operation.		10					
b.	With block diagram, explain the architecture of ADC10.	10					

* * * *