Time: 3 hrs

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Fourth Semester, B.E. - Electrical and Electronics Engineering Semester End Examination; May / June - 2019

Electromagnetic Theory

Max. Marks: 100

Note: Answer *FIVE* full questions, selecting *ONE* full question from each unit.

UNIT - I State and explain Coulomb's law in vector form. 6 A charge $Q_A = -20 \mu C$ is located at A (-6, 4, 7) and charge $Q_B = 50 \mu C$ is located at (5, 8, -2) 7 in free space. If the distance is in meters. Find r and the force exerted on Q_A by Q_B . c. Find the electric field intensity due to a line charge distribution, ρ_L (c/m) of length, L where the 7 charge is uniformly distributed along the line. 2 a. Explain the following terms: i) Electric flux 6 ii) Electric flux density b. State and prove Gauss's law. 7 Given, $D = 5r\hat{a}_r(c/m^2)$. Determine whether the divergence theorem holds good for the region 7 enclosed by a spherical surfaces at r = a and r = b (b > a) and at the centered at the origin. **UNIT-II** 3 a. The electric potential at an arbitrary point in free space is given as, $V = (x+1)^2 + (y+2)^2 + (z+3)^2$ 6 V at P(1, 1, 1). Find V, E, D and δ_{V} . Determine the energy stored in free space of the region : $0 < \rho < a$, $0 < \phi < \pi$, 0 < z < 2 for the 7 given potential field $V = V_0 \frac{\rho}{a}$ (volts). c. Derive an expression for energy density in an electro static field. Starting from fundamentals derive the expressions for Laplace and Poison's equations. 7 Given the electric potential field, $V = [A\rho^4 + B\rho^{-4}]\sin 4\phi$; (i) Show that $\Delta^2 V = 0$ in cylindrical coordinates 6 (ii) Select the values of A and B, so that V = 100 V and |E| = 500 (V/m) at $P(1, 22.5^{\circ}, 2)$ A large spherical cloud of radius, b has a uniform volume charge distribution of δ_V (c/m³). Find 7 the potential distribution and electric field intensity at any point in space using Laplace's and Poisson's equation.

UNIT - III

5 a. Derive the continuity equation of current in integral and point form.

P17EE44	Page No 2
1 1 / 121244	i age ivo

b.	Two cubes of dielectric materials have a common face in the xy - plane. An electric field vector,		
	$E = 3a_x + 4a_y - 12a_z$ (V/m) in cube 2 (z > 0). The material of which has relative permittivity = 4.	7	
	Find \overline{D} in the cube 1, the material of which has relative permittivity = 2.		
c.	The Z = 0 plane defines the boundary between free space and a dielectric medium with a		
	dielectric constant of 20. The E field next to the interface in free space is	7	
	$E = 10a_x + 20a_y + 40a_z$ (V/m). Determine E on the other side of the boundary.		
6 a.	Discuss the boundary conditions between two dielectric medium interfaces.		
b.	Determine the capacitance of a parallel plate capacitor consisting of two parallel conducting	6	
	plates of area 'A' and separation'd'.	C	
c.	Consider two metallic spherical shells of radii a and b . Find the capacitance of the system.	6	
	UNIT - IV		
7 a.	a. State Biot-Savarot's law. Derive the expression for magnetic flux density at a given point due to a current carrying element of finite length.		
b.	A straight conductor of length 2L carrying AC current of I coinsides with a2 direction. Obtain the		
	expression for the magnetic vector potential at a point in the bisecting plane of the conductor.	7	
	Also find B at that point.		
c.	c. State and Prove Stoke's theorem.		
8 a.	a. State and Prove Ampere's Law.		
b.	Find the magnetic field due to an infinitely long straight conductor carrying a	7	
	steady current of I(A).	,	
c.	A 10(A) current flows along a wire of length 10 (metres). If the wire is situated along the Z-axis		
	of rectangular coordinate system and centered at the origin. Find the magnetic flux density at,		
	i) (0, 3, 0)	6	
	ii) (0, 0, 5)		
	UNIT - V		
e) a.	If the electric field intensity in free space is given in the rectangular coordinates as		
	$E = E_m \sin \alpha x \sin (wt - \beta z)^n a_y (\sqrt{m})$. Find the magnetic field intensity, <i>H</i> using Faraday's law.	6	
b.	State and explain Faraday's law of electromagnetic induction. Write the point form of it.	8	
c.	Write Morewell's equation in integral form.	6	
0 a.	Find the self inductance per unit length of an infinitely long solenoid.	6	
b.			
C	frequency range on which the conduction current dominates the displacement current. Derive the expression for force between two current carrying conductors	c	
٠.	LIEUVE DE EXDENIUM DO DOCEDENCEM INCLUDIEM CALVINO COMBICANIA		