
P17ME45 Page N		1
į	P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Fourth Semester, B.E Mechanical Engineering Semester End Examination; May / June - 2019 Kinematics of Machinery	
	Time: 3 hrsMax. Marks: 100	2
	<i>Note:</i> Answer <i>FIVE</i> full questions, selecting <i>ONE</i> full question from each unit.	
1	UNIT - I	
1 a.		4
1	i) Higher pair ii) Kinematic chain iii) Mechanism iv) Mobility	
b.		4
c.	Sketch and explain; i) Oldham's coupling ii) Pantograph mechanism.	1
2 a.	Explain the following with help of neat sketches:	
	i) Elliptical trammel	e
	ii) Whitworth quick return motion mechanism	7
	iii) Ackermann steering mechanism for correct steering	7
	UNIT - II	
3 a.	Locate the entire instantaneous centre for the four bar mechanism.	4
b.	State and prove Kennedys theorem of instantaneous centre.	4
c.	Locate all the instantaneous centres of the slider crank mechanism as shown in Fig.Q.3(c). Th	e
	length of crank OB and connecting rod AB are 100 mm and 400 mm respectively. If the crant	k
	rotates clockwise with an angular velocity of 10 rad/s. Find;	

i) Velocity of the slider A ii) Angular velocity of the connecting rod AB

4. PQRS is a four bar chain with link PS fixed. The length of the links are PQ = 62.5, QR = 175 mm, RS = 112.5 mm and PS = 200 mm. The crank PQ rotates at 10 rad/s clockwise. Draw the velocity and acceleration diagram, when angle QPS = 60° and Q and R lie on the same side of PS. Find the angular velocity and angular acceleration of link QR and RS.

UNIT - III

5 a. Classify the Gears.

b. State and prove law of Gearing.

Contd...2

10

20

4

6

	P17ME45 Page No 2	
c.	Two 20° involute spur gears mesh externally and give a velocity ratio of 3. The module is 3 mm	
	and the addendum is equal to 1.1 module. If the pinion rotates at 120 rpm, determine the;	10
	i) Minimum number of teeth on each wheel to avoid interference	10
	ii) Contact ratio	
6 a.	Derive an expression for the length of the path of contact in a pair of meshed spur gear.	8
b.	A pinion having 30 teeth drives a gear having 80 teeth. The profile of the gears is involute with	
	20° pressure angle, 12 mm module and 10 mm addendum. Find the length of path of contact,	12
	arc of contact and the contact ratio.	
	UNIT - IV	
7 a.	Sketch and explain;	0
	i) Compound gear train ii) Reverted gear train iii) Epicyclic gear train	9
b.	An epicyclic gear consists of three gears A, B and C the gear A has 72 internal teeth and gear C	
	has 32 external teeth. The gear B meshes with both A and C and is carried on an arm EF which	11
	rotates about the centre of A at 18 rpm. Sketch the arrangement and determine the speed of	11
	gears B and C, if the gear A is fixed.	
8 a.	Explain the following term in a belt drive :	4
	i) Centrifugal tension ii) Slip	4
b.	Drive an expression for ratio of tension in V-belt drive.	8
c.	The initial tension in a flat belt drive is 1800 N. The angle of lap on the smaller pulley is 170° .	
	The coefficient of friction of the belt and pulley surface is 0.25. The pulley has a diameter of	

The coefficient of friction of the belt and pulley surface is 0.25. The pulley has a diameter of 0.9 m and it runs at 540 rpm. Determine the power that can be transmitted at the above speed. Neglect centrifugal tension.

UNIT - V

- 9 a. Sketch and explain the terminology of radial cam.
 - b. A cam with 30 mm minimum radius drives a flat faced reciprocating follower during first 120° rotation of the cam follower moves outwards through a distance of 30 mm with uniform velocity. The follwer dwells during next 60° cam rotation. During next 90° cam rotation, the follower 12 moves inwards with SHM. Follower dwell for the remaining period of cam rotation , draw the profile of the cam.
- 10. Draw the profile of a cam operating a roller reciprocating follower and with the following data : Minium radius of cam = 30 mm, lift = 30 mm, roller diameter = 14 mm, axis of the follower is off set to the right of the cam axis by 18 mm. The cam lifts the follower for 120° with SHM followed by dwell period of 50°. Then the follower lowers down during 160° of cam rotation with UARM followed by dwell period . The acceleration being 3/5 times of retardation. The cam rotates at a uniform speed of 150 rpm (CW direction). Calculate the maximum velocity and acceleration of the follower during the ascent period.

8

8