U.S.N <div class="inline-tabular"><table id="tabular" data-type="subtable">
<tbody>
<tr style="border-top: none !important; border-bottom: none !important;">
<td style="text-align: left; border-left-style: solid !important; border-left-width: 1px !important; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
<td style="text-align: left; border-right-style: solid !important; border-right-width: 1px !important; border-bottom-style: solid !important; border-bottom-width: 1px !important; border-top: none !important; width: auto; vertical-align: middle; " class="_empty"></td>
</tr>
</tbody>
</table>
<table-markdown style="display: none">| | | | | | | | | | |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- | :--- |</table-markdown></div>

 P.E.S. College of Engineering, Mandya - 571401

 P.E.S. College of Engineering, Mandya - 571401
 (An Autonomous Institution affiliated to VTU, Belagavi)
 Second Semester, B.E. - Semester End Examination; May/June - 2019
 Basic Electronics
 (Common to All Branches)

Max. Marks: 100

Course Outcomes

The Students will be able to:
CO1: Apply the knowledge of physics and mathematics to understand the operation of PN diodes, Zener diodes, MOSFET, Solar cells, LCD, CRT, Transducers, Modulation techniques and Opamps.
CO2: Analyze circuits built with diodes, Zener diodes, MOSFET and Opamp.
CO3: Design simple circuit to perform rectification, voltage regulation, Opamp base amplifier, summer and filter, MOSFET base amplifier, digital circuits.
CO4: Analyze and implement basic Digital Electronic circuit for a given application using knowledge of Boolean Algebra and basic gates.
CO5: Discuss different modulation techniques communication systems.
Note: Answer $\underline{\boldsymbol{F I V E}}$ full questions, selecting $\underline{\boldsymbol{O N E}}$ full question from each Unit.

| Q. No. | Questions | Marks | COs | BL | POs |
| :--- | :--- | :--- | :--- | :--- | :--- | :--- |

1 a. Compare Half Wave Rectifier (HWR), Full Wave Rectifier (FWR) and Bridge Rectifier on the basis of; i) Ripple factor ii) Efficiency iii) DC output voltage iv) Transformer utility
b. With the help of neat diagram and associated waveforms, explain the working of full wave rectifier with center tapped transformer.
c. Two diodes are connected as shown in Fig. Q1(c). Determine the currents I_{1}, I_{2} and $I_{D 2}$.

2 a . Mention any two differences between Diode and IR emitter? With the help of a neat diagram, explain IR emitter diode.
b. Derive an expression for the ripple factor of a full wave rectifier with capacitor filter.
c. For the network of Fig. Q2(c), determine the range of R_{L} and I_{L} that will result in V_{RL} being maintained at 10 V .

$6 \quad \mathrm{CO} 2 \quad \mathrm{~L} 2 \quad \mathrm{PO} 2$
$8 \quad$ CO1 L2 PO1
$6 \quad \mathrm{CO} 1 \quad \mathrm{~L} 1 \quad \mathrm{PO} 1$
$6 \quad \mathrm{CO} 2 \mathrm{~L} 2 \mathrm{PO} 2$

3 a . With the help of a neat diagram, explain the construction and operation of N-channel enhancement type MOSFET.

P18EC25

b. Mention the important characteristics of CMOS FET arrangement with a diagram and explain CMOS inverter.
c. If an average threshold voltage $\mathrm{V}_{\mathrm{GS}(\mathrm{th})}=3 \mathrm{~V}$ and $\mathrm{V}_{\mathrm{GS}(\mathrm{on})}=10 \mathrm{~V}$, $\mathrm{I}_{\mathrm{D}(\text { on })}=3 \mathrm{~mA}$, sketch the transfer characteristics of N-channel enhancement MOSFET, for $\mathrm{V}_{\mathrm{GS}}=5,8,10,12$ and 14 V .
4 a. State and explain Barkhausen criterion for sustained oscillation.
b. Draw an AC equivalent network for an amplifier constructed using E-MOSFET drain feedback configuration.
c. For the n-channel depletion-type MOSFET with $\mathrm{R}_{1}=110 \mathrm{M} \Omega$, $\mathrm{R}_{2}=10 \mathrm{M} \Omega, \mathrm{R}_{\mathrm{D}}=1.8 \mathrm{k} \Omega, \mathrm{R}_{\mathrm{S}}=750 \Omega, \mathrm{I}_{\mathrm{DSS}}=6 \mathrm{~mA}, \mathrm{~V}_{\mathrm{p}}=-3 \mathrm{~V}$. Determine; i) $I_{D Q}$ and $V_{G S Q}$ and draw DC load line ii) $V_{D S}$
iii) For the transfer characteristics use, $I_{D}=\frac{I_{D S S}}{4}=\frac{6 \mathrm{~mA}}{4}=1.5 \mathrm{~mA}$

$$
\text { and } V_{G S}=\frac{V_{P}}{2}=\frac{-3 V}{2}=-1.5 \mathrm{~V}
$$

UNIT - III

5 a . List the properties of an ideal Opamp.
b. Show that maximum frequency of a sinusoidal voltage that results in an undistorted output from an Opamp is given by $f_{\text {max }}=\frac{S_{R}}{2 \pi V m} ; \mathrm{S}_{\mathrm{R}}=$ Maximum slew rate of Opamp
c. With the help of neat diagram, explain how an Opamp can be used as,
i) Integrator
ii) Summing amplifier

6 a. Design an adder circuit using Opamp to obtain output voltage given by, $\mathrm{V}_{0}=-\left[0.5 \mathrm{~V}_{1}+0.8 \mathrm{~V}_{2}+2 \mathrm{~V}_{3}\right]$, Where $\mathrm{V}_{1}, \mathrm{~V}_{2}$ and V_{3} are the inputs.
b. With the neat circuit diagram, explain;
i) Current controlled voltage source ii) Current controlled current source
c. What is a filter? Mention any two differences between active and passive filter. Write the Opamp circuit and frequency response curve of a $1^{\text {st }}$ order active high passes filter.

UNIT - IV

7 a. Perform; i) $(725.25)_{8}=(?)_{10}=(?)_{2}$
ii) $(31 \mathrm{C} \cdot \mathrm{DE})_{16}=(?)_{10}$
b. Simplify and realize using basic gates :
i) $\mathrm{Y}=\mathrm{AB}+\overline{\mathrm{A}} \mathrm{C}+\mathrm{BC}$
ii) $Y=C(B+C)(A+B+C)$
c. Perform binary subtraction using 1's and 2's complement 1010-111.

8 a. With the help of truth table realize XOR gate using; i) Basic gates
ii) Nand gates.
b. Implement and explain 4:1 multiplexer using basic gate.
c. Realize and implement the given expression using Nor gate only,
$Y=\bar{A} B C+A \bar{B} C+A B C$

UNIT - V

9 a. Obtain an expression for the total average power of a sinusoidal AM wave.
b. With a neat block diagram explain the operation of a super heterodyne receiver.
c. Compare AM and FM.

10 a. Explain the functional Blocks of optical fibre communication. List its advantages and applications.
b. Explain LVDT and Capacitive transducers.

5

CO1 L1 PO1

