P18EC25						
	U.S.N					
	P.E.S. College of Engineering, Mandya -		01	- J		
	(An Autonomous Institution affiliated to VTU, Belaga Second Semester, B.E Semester End Examination; Ma		- 2019			
	Basic Electronics	y/June	- 2017			
	(Common to All Branches)					
Time	: 3 hrs		Max.	Marks	:: 10	
	Course Outcomes					
CO1: A L	udents will be able to: pply the knowledge of physics and mathematics to understand the operation of PN diodes, 2 CD, CRT, Transducers, Modulation techniques and Opamps. Analyze circuits built with diodes, Zener diodes, MOSFET and Opamp.	Zener diode	es, MOSF	ET, Sold	ır cell:	
CO3: I a	Design simple circuit to perform rectification, voltage regulation, Opamp base amplifier, mplifier, digital circuits.					
g	Analyze and implement basic Digital Electronic circuit for a given application using knowl ates. Discuss different modulation techniques communication systems.	eage of bo	olean Al	geora ai	ia das	
Note:	Answer <u>FIVE</u> full questions, selecting <u>ONE</u> full question from each Unit.					
). No.	Questions	Marks	COs	BL	РО	
	UNIT - I					
1 a.	Compare Half Wave Rectifier (HWR), Full Wave Rectifier (FWR)and Bridge Rectifier on the basis of; i) Ripple factorii) Efficiency	6	CO1	L2	PO	
b.	iii) DC output voltage iv) Transformer utility With the help of neat diagram and associated waveforms, explain the	8	CO1	L1	PO	
c.	working of full wave rectifier with center tapped transformer. Two diodes are connected as shown in Fig. Q1(c). Determine the currents	U	001	21	10	
C.	I_{1} , I_{2} and I_{D2} .					
	Di Ri=3.3K.2					
	\pm \pm ∇ $\mathbf{p}_{\mathbf{a}}$	6	CO2	L2	PO	
	E = aov T ID.					
	R2=5.6K-2					
	I ₂ Fig. Q1(C)					
2 a.	Mention any two differences between Diode and IR emitter? With the					
2 a.	help of a neat diagram, explain IR emitter diode.	8	CO1	L2	PO	
b.	Derive an expression for the ripple factor of a full wave rectifier with capacitor filter.	6	CO1	L1	PO	
c.						
	result in V_{RL} being maintained at 10 V.					
	$\int R = IK \Omega + I_2 + I_L$	6	CO2	L2	PO	
	$V_{z} = 50V$ $r_{z} = 10V$ r_{L}	0	002	L	10	
	Izm= 32mA					
	Pg. Ga(c)					
2	UNIT - II					
3 a.	With the help of a neat diagram, explain the construction and operation	6	CO1	L1	PO	
	of <i>N</i> -channel enhancement type MOSFET.					

P18EC25 Pag					
b.	Mention the important characteristics of CMOS FET arrangement with a diagram and explain CMOS inverter.	б	CO1	L1	PO1
c.	If an average threshold voltage $V_{GS(th)} = 3$ V and $V_{GS(on)} = 10$ V, $I_{D(on)} = 3$ mA, sketch the transfer characteristics of <i>N</i> -channel enhancement MOSFET, for $V_{GS} = 5$, 8, 10, 12 and 14 V.	8	CO2	L2	PO2
4 a.	State and explain Barkhausen criterion for sustained oscillation.	5	CO2	L1	PO2
b.	Draw an AC equivalent network for an amplifier constructed using	5	CO2	L1	PO2
	E-MOSFET drain feedback configuration.	5	002	LI	102
c.	For the <i>n</i> -channel depletion-type MOSFET with $R_1 = 110 \text{ M}\Omega$, $R_2 = 10 \text{ M}\Omega$, $R_D = 1.8 \text{ k}\Omega$, $R_S = 750 \Omega$, $I_{DSS} = 6 \text{ m}A$, $V_p = -3 \text{ V}$. Determine; i) I_{DQ} and V_{GSQ} and draw DC load line ii) V_{DS} iii) For the transfer characteristics use, $I_D = \frac{I_{DSS}}{4} = \frac{6 \text{ m}A}{4} = 1.5 \text{ m}A$ and $V_{GS} = \frac{V_P}{2} = -\frac{3V}{2} = -1.5 V$	10	CO3	L3	PO3
	$v_{GS} = \frac{1}{2} = \frac{1}{2} = -1.5 v$ UNIT - III				
5 a.	List the properties of an ideal Opamp.	6	CO2	L1	PO2
b.	Show that maximum frequency of a sinusoidal voltage that results in an				
	undistorted output from an Opamp is given by	6	CO2	L2	PO2
	$f_{\text{max}} = \frac{S_R}{2\pi Vm}$; S _R = Maximum slew rate of Opamp				
c.	With the help of neat diagram, explain how an Opamp can be used as,	8	CO1	L1	PO1
ба.	i) Integratorii) Summing amplifierDesign an adder circuit using Opamp to obtain output voltage given by,				
0 a.	$V_0 = -[0.5 V_1 + 0.8 V_2 + 2 V_3]$, Where V_1 , V_2 and V_3 are the inputs.	6	CO3	L3	PO3
b.	With the neat circuit diagram, explain;	6	CO1	T 1	
	i) Current controlled voltage source ii) Current controlled current source	6	CO1	L1	PO1
c.		0	CON	1.2	DO2
	filter. Write the Opamp circuit and frequency response curve of a 1 st order active high passes filter.	8	CO2	L2	PO2
	UNIT - IV				
7 a.	Perform; i) $(725.25)_8 = (?)_{10} = (?)_2$ ii) $(31C.DE)_{16} = (?)_{10}$	5	CO3	L2	PO2
b.	Simplify and realize using basic gates :	10	CO4	L3	PO3
	i) $Y = AB + \overline{A}C + BC$ ii) $Y = C(B + C)(A + B + C)$				
c.	Perform binary subtraction using 1's and 2's complement $1010 - 111$.	5	CO3	L2	PO2
8 a.	With the help of truth table realize XOR gate using; i) Basic gates ii) Nand gates.	8	CO4	L2	PO4
b.	Implement and explain 4:1 multiplexer using basic gate.	6	CO4	L2	PO4
c.	Realize and implement the given expression using Nor gate only,	6	CO4	L2	PO4
	$Y = \overline{A}BC + A\overline{B}C + ABC$	6	C04	L2	FO4
0	UNIT - V				
9 a.	Obtain an expression for the total average power of a sinusoidal AM wave.	8	CO5	L1	PO2
b.	With a neat block diagram explain the operation of a super heterodyne		~ ~ ~		
	receiver.	8	CO5	L1	PO2
с.	Compare AM and FM.	4	CO5	L1	PO2
10 a.	Explain the functional Blocks of optical fibre communication. List its	10	CO5	L1	PO2
b.	advantages and applications. Explain LVDT and Capacitive transducers.	10	CO1	L1	PO1
υ.	Explain E (D) and Capacitive transducers.	10	COI		101