U.S.N					

8

Contd...2

CO2 L2 PO3

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Second Semester, B.E. - Semester End Examination; May / June - 2019 Basic Electrical Engineering

(Common to All Branches)

					: 100
CO1: A CO2: I CO3: I CO4: I CO5: T	Course Outcomes udents will be able to: unalyze single phase and three phase AC circuits. Demonstrate their understanding about earthing and different types of earthing. Demonstrate their understanding about different types of measuring instruments and their usa, dentify and analyze the parts of DC machines, Transformers, Alternators and Induction mach To get an overview of special electrical machines. Answer FIVE full questions, selecting ONE full question from each unit.				
Q. No.	Questions	Marks	COs	BL	POs
4	UNIT - I				
1 a.	Define the following terms:	6	CO1	L1	PO1
	i) Real Power ii) Reactive Power iii) Apparent Power iv) Power Factor				
b.	Derive an expression for the average power consumed in a series RL	6	CO1	L2	PO2
	circuit. Draw the related waveforms.				
c.	A 0.5 p.f load of 4 kW is connected in parallel with a capacitance C. If the				
	supply voltage is 230 V, 50 Hz and overall p.f is 0.85. Calculate the value	8	CO1	L3	PO2
	of capacitance C.				
2 a.	Define RMS value and derive an expression for RMS value of a sinusoidal	6	CO1	L1	PO1
	alternating quantity.	U	COI	LI	POI
b.	Show that the current in pure inductance lags the voltage by 90°.	6	CO1	L2	PO3
c.	A two elements series circuit is connected across an AC source of				
	$e = 200\sqrt{2}\sin(wt + 20^{\circ})V$. The current in the circuit then is found to be	8	CO1	L3	PO2
	$i = 10\sqrt{2}\cos(314t - 25^{\circ})A$. Determine the power factor, nature of the	0			
	circuit and value of the circuit elements.				
	UNIT - II				
3 a.	Develop the relation between line and phase values for 3-\$\ph\$ balanced delta	7	CO2	1.2	DO2
	connected system and hence derive an expression for power.	,	CO2	L2	PO2
b.	With the help of a circuit diagram and switching table, explain two-way				PO1
	and three-way control of lamps.	8	CO2	L2	&
	List the advantages of these phase systems are single phase systems	5	G02	T 4	PO6
С.	List the advantages of three phase systems over single phase system.	5	CO2	L1	PO1
4 a.	What is the necessity of Earthing? With a neat sketch, explain pipe	6	CO2	L2	PO2 &
	Earthing.			- -	PO6

b. With a neat sketch, explain the construction and working of a single phase

induction type energy meter.

P18EE25		Page No 2						
c.	Three similar coils are connected in star takes power of 1.5 kW at a power							
	factor of 0.2 lagging, from a three phase 400 V, 50 Hz supply. Determine	6	CO2	L3	PO2			
	the circuit parameters.							
	UNIT - III							
5 a.	With a neat sketch, explain the construction of a DC machine and function	8	CO3	L2	PO2			
	of each part.		CO3		102			
b.	With usual notation, derive the EMF equation of a synchronous generator.	6	CO3	L2	PO2			
c.	A 6 pole, 500 V lap-wound series motor has 710 armature conductors and							
	has a total resistance of 1 Ω . It gives 35 kW, when taking 90 A. If the flux	6	CO3	L3	PO3			
	per pole is 0.07 Wb, find;	Ü	CO3	L3	103			
	i) Total torque developed ii) Mechanical power developed							
6 a.	Derive an expression for the torque developed by a DC motor.	8	CO3	L2	PO1			
b.	What is Back EMF? Explain its significance.	6	CO3	L1	PO1			
c.	A 3 phase, 16 pole alternator has a star connected winding with 144 slots							
	and 10 conductors per slot. The flux per pole is 0.003 Wb and the speed is	6	CO3	L3	PO3			
	375 rpm. Evaluate frequency, the phase and line emfs. Assuming pitch	O	CO3	L3	103			
	factor $K_C = 1$ and distribution factor $K_d = 0.96$.							
	UNIT - IV							
7 a.	What is Transformer? Write the working principle of a single phase	6	CO4	L1	PO2			
	Transformer.							
b.	Obtain an expression for EMF of a transformer.	6	CO4	L2	PO2			
c.	Find the efficiency of a single phase 150 kVA transformer at,							
	i) 25% full loadii) 100% full load at 0.8 p.f lag, if copper loss is 1600 W at full load and	8	CO4	L3	PO3			
	the iron loss is 1400 W							
8 a.	Explain the concept of rotating magnetic field in a three phase							
o a.	induction motor.	8	CO4	L2	PO2			
b.	Distinguish between Cage rotor and Wound rotors of three phase							
0.	induction motor.	6	CO4	L1	PO2			
c.	A 6 pole, 50 Hz three induction motor which runs at 970 rpm. What is the							
	slip of the induction motor?	6	CO4	L3	PO3			
	UNIT - V							
9 a.	Explain the construction, working and applications of BLDC motor.	10	CO5	L2	PO2			
b.	With a neat sketch and Phasor diagram, explain the capacitor star and	10	G0.		D02			
	capacitor run single phase induction motor. Mention its applications.	10	CO5	L2	PO3			
10 a.	With a neat sketch, explain the working of DC servo motor.	6	CO5	L2	PO3			
b.	With a neat sketch, explain the working of stepper motor.	8	CO5	L2	PO3			
c.	Mention the applications of stepper motors and servo motors.	6	CO5	L1	PO3			