(An Autonomous Institution affiliated to VTU, Belagavi) Second Semester, B.E. – Electrical and Electronics Engineering Semester End Examination;

Basic Electrical Engineering

Time: 3 hrs

Max. Marks: 100

Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

- Define the following Terms: 1 a. 6 i) Real power ii) Reactive power iii) Power Factor Derive an expression for the average power consumed in a series RL circuit. Draw the b. 6 Related waveforms. 6 A 0.5 p.f. load of 4KW is connected in parallel with a capacitance C. If the supply voltage is c. 8 230V, 50Hz and overall p.f. is 0.85, calculate the value of capacitance C. 2 a. Define RMS value and derive an expression for RMS value of a sinusoidal alternating 6 Quantity. Show that the current series circuit inductance lags the voltage by 90°. 6 b. c. two elements series circuit is connected across AC source of Α an $e = 200\sqrt{2} \sin(wt + 20^{\circ})V$. The current in the circuit then is found to be 8 $i = 10\sqrt{2}\cos(314t - 25^\circ)A$. Determine the power factor, nature of the circuit and value of the circuit elements. UNIT – II 3 a. Develop the relation between line and phase values for $3-\phi$ balanced Delta connected system
- 7 and hence derive expression for Power. With the help of a circuit diagram and switching table explain 2-Way and 3-Way control of b. 8 lamps. List the advantages of 3 phase systems over single phase system. 5 c. What is the necessity of Earthing? With a neat sketch explain Pipe earthing. 4 a. 6 With a neat sketch, explain the construction and working of a single phase induction type b. 8 energy meter. Three similar coils are connected in star takes power of 1.5 KW at a power factor of 0.2 c. 6 lagging, from a three phase 400V-50Hz supply. Determine the circuit parameters.

P18EE25

Page No... 2

UNIT - III

5 a.	With a neat sketch, explain the construction of a DC machine and function of each part.	8
b.	With usual notation, derive the EMF equation of a synchronous generator.	6
с.	A 6 pole, 500 volt lap-wound series motor has 710 armature conductors and has a total	
	resistance of 1 ohm. It gives 35kw when taking 90A. If the flux per pole is 0.07 Wb find	6
	(i) Total torque developed (ii) mechanical power developed	
6 a.	Derive an expression for the torque developed by a DC motor.	8
b.	What is Back Emf? Explain its significance.	6
c.	A 3 phase, 16 pole alternator has a star connected winding with 144 slots and 10 conductors	
	per slot. The flux per pole is 0.003. Wb and the speed is 375 rpm. Evaluate frequency, the	6
	phase and line emfs assuming pitch factor $K_C=1$ and distribution factor $K_d=0.96$	
UNIT - IV		
7 a.	What is transformer? Write the working principle of a single phase transformer.	6
b.	Obtain an expression for emf of a transformer.	6
c.	Find the efficiency of a single phase 150k VA transformer at	
	i) 25% full load ii) 100% full load at 0.8 p.f. lag, if copper loss is 1600W at full load	8
	and the iron loss is 1400w.	
8 a.	Explain the concept of rotating magnetic field in a three phase induction motor.	8
b.	Distinguish between Cage rotor and Wound rotors of three phase induction motor.	6
с.	A 6 pole, 50 Hz three induction motor which runs at 970rpm. What is the slip of the	6
	induction motor?	0
	UNIT - V	
9 a.	Explain the construction, working and applications of BLDC motor.	10
b.	With a neat sketch and phasor diagram, explain the capacitor star and capacitor run single	10
	phase induction motor. Mention its applications.	10
10 a.	With a neat sketch explain the working of DC servo motor.	6
b.	With a neat sketch explain the working of stepper motor.	8
c.	Mention the applications of stepper motors and Servo motors.	6
	* * * *	