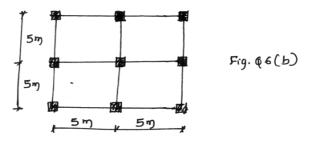
Page No... 1



P.E.S. College of Engineering, Mandya - 571 401 (An Autonomous Institution affiliated to VTU, Belagavi) Second Semester, M. Tech - Civil Engineering (MCAD)


> Semester End Examination; May/ June - 2019 Seismic Resistant Design of Structural System

|      | Definite Resistant Design of Structural System                                                                   | <u>.</u>              |    |
|------|------------------------------------------------------------------------------------------------------------------|-----------------------|----|
| Τi   | ime: 3 hrs                                                                                                       | Max. Marks: 100       |    |
| Ne   | ote: i) Answer FIVE full questions, selecting ONE full question from each un<br>ii) IS:1893 - 2002 is permitted. | nit.                  |    |
|      | UNIT - I                                                                                                         |                       |    |
| 1 a. | What are epicenter and hypocenter? How epicenter is located using seismo                                         | graphs?               | 10 |
| b.   | Mention the difference between :                                                                                 |                       | 10 |
|      | i) Seismogram and Seismograph ii) Acceleration and Accelerog                                                     | graph                 | 10 |
| 2 a. | Explain with sketches, the different types of waves generated during eart their characteristics.                 | hquake and mention    | 10 |
| b.   | Explain strong motion characteristics and their determination. Mention the to ground motion.                     | e factors influencing | 10 |
|      |                                                                                                                  |                       |    |

## UNIT - II

| 3 a. | Explain the concept and development of response spectrum.                                     | 10 |  |  |  |
|------|-----------------------------------------------------------------------------------------------|----|--|--|--|
| b.   | neat sketch, explain tripartite plot of response. Explain the displacement, velocity and      |    |  |  |  |
|      | acceleration sensitive regions.                                                               | 10 |  |  |  |
| 4 a. | What is plan irregular building? Explain how torsion is produced in plan irregular buildings? | 10 |  |  |  |
| b.   | Explain the following with respect to earthquake resistant design :                           | 10 |  |  |  |
|      | i) Base isolated structures ii) Ductility design in R.C. structures.                          |    |  |  |  |
|      | UNIT - III                                                                                    |    |  |  |  |
| 5 a. | Explain different lateral load resisting system in building with neat sketches.               | 10 |  |  |  |
| b.   | What is earthquake design philosophy?                                                         | 4  |  |  |  |
| c.   | Explain the mechanism of liquefaction of soil during earthquake.                              | 6  |  |  |  |
| 6 a. | What are the load combinations used in seismic analysis of RCC structures?                    | 6  |  |  |  |

b. Determine the base shear and distribution of lateral force on each floor for the plan of the building shown in Fig. Q6(b). The building is for hospital with 5 storeys and height of each floor is 3.0 m. Assume live load of  $3 \text{ kN/m}^2$ , columns  $300 \times 300$  mm, beams  $300 \times 450$  mm and slabs 150 mm thick. Assume 230 mm thick masonry walls on all beams. Consider the soil to be hard rock and frame to be special moment resisting frame.



14

## P18MCAD21

10

10

10

10

10

10

20

## UNIT - IV

| 7 a. | Explain the behavior of masonry structures during earthquake.                                 |  |
|------|-----------------------------------------------------------------------------------------------|--|
| b.   | Explain the behavior of in-filled frames during earthquakes. Discuss how they are modelled    |  |
|      | and analyzed.                                                                                 |  |
| 8 a. | Explain the various measures of improving the earthquake resistance of masonry buildings with |  |
|      | neat sketches.                                                                                |  |
| b.   | List and explain the geotechnical aspects of earthquake effect on structures.                 |  |
|      | UNIT - V                                                                                      |  |
| 9 a. | Explain different strategies adopted for seismic retrofitting of R.C. buildings.              |  |
| b.   | Explain in detail how compressive strength and flexural tensile strength of masonry           |  |
|      | is determined?                                                                                |  |
| 10.  | Discuss the following issues with respect to earthquake resistant design of structures :      |  |

- a) Base isolation in R.C. structure
- b) Behaviour of shear walls
- c) Strong column weak beam concept
- d) Ductile detailing in columns

\* \* \* \*