\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)
Second Semester, M. Tech - Civil Engineering (MCAD)
Semester End Examination; May / June - 2019
Structural Stability Analysis - Classical and FE Approach
Time: 3 hrs
Max. Marks: 100
Note: Answer FIVE full questions, selecting ONE full question from each unit.

UNIT - I

1 a. Using the expression of the deflection of beam column, derive the differential equation for a beam column subjected to several concentrated loads.
b. Derive the fourth order differential equation for a beam column.
2. Using the fourth order differential equation obtain the first three critical loads for,
i) Pinned-Pinned column
ii) Fixed-Pinned column

UNIT - II
3. Using energy method, determine the expression for the foundation modulus at which the number of half waves switches over from m to ($m+1$), critical load for a simply supported beam-column resting on an elastic foundation.
4. Determine the frequency equation for cantilever column subjected to a follower tangential load.

UNIT - III

5. Determine the buckling load for the pin jointed truss shown in Fig. Q(5), axial rigidity of both the members is $\mathrm{AE}=1 \mathrm{~N}$.

6. Determine the critical load for a fixed column by discritizing into two elements, compare the answer with the close form solution, take length of column $=2 \mathrm{~m}$ and EI $=2 \mathrm{~N}-\mathrm{m}^{2}$.

UNIT - IV
7. Derive the differential equation for non-uniform torsion of thin walled bars of open section.
8. Determine the critical moment for an I-section beam subjected to pure bending against lateral buckling.

UNIT - V

9. Determine the critical load for the buckling of uniformly compressed rectangular plate simply supported along two opposite sides perpendicular to the direction of compression. The side $\mathrm{Y}=0$ is simply supported, the side $\mathrm{Y}=\mathrm{b}$ is free.
10. Determine the critical load for the buckling of a rectangular plate simply supported along two opposite sides and uniformly compressed in the direction parallel to those sides.
