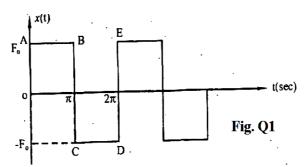
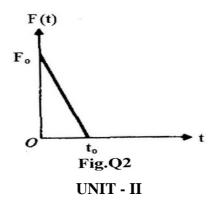


Advanced Theory of Vibrations


Time: 3 hrs

Max. Marks: 100


Note: i) Answer FIVE full questions, selecting ONE full question from each unit. ii) Any missing data may be assumed suitably.

UNIT - I

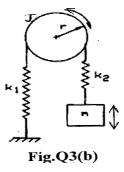
1. A single degree of freedom spring-mass-damper system is subjected to periodic excitation shown in Fig. Q.1. Obtain the expression for response of the system. Assume the natural frequency of the system as 0.5 rad/s and damping factor of 0.1. Also take stiffness of the system as $\frac{400}{15\pi}$ N/mm, $F_0 = 10$ N.

2. An undamped single degree of freedom system is subjected to a non-periodic force as shown in Fig.Q.2. Obtain the response of the system, when $t < t_0$ and $t > t_0$, by method of convolution integral.

20

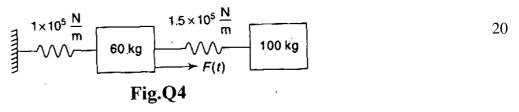
8

20

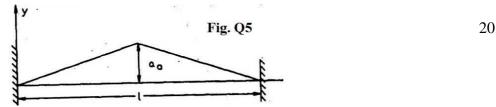

- 3 a. Explain;
 - i) Generalized coordinates
 - ii) Coordinate coupling
 - iii) Static coupling
 - iv) Dynamic coupling

12

20


P18MMDN22

b. Obtain stiffness coefficients for the system show in Fig.Q.3(b)


4. Obtain the amplitudes of steady state vibration of the system shown in Fig Q.4.

Take $f(t) = 250 \sin 40t$.

5. A uniform string with initial tension 's' is displaced as shown in Fig Q.5 and released at time t = 0. Find the equation of motion for the string.

6. Obtain the frequency equation for lateral vibrations of a cantilever of uniform section having length *l*.

UNIT - IV

- With the help of necessary figures, equations and graphs, explain the working principle of Vibrometer, accelerometer and velocity pick-up.
- 8 a. Sketch and explain;
 - i) Non contacting type Vibrometer
 - ii) Piezoelectric type accelerometer
 - iii) Electro dynamic shakes

UNIT - V

9 a.	Using a point mass attached to the midpoint of a stretched string, explain hardening spring	12
	non-linearity.	12
b.	With the help of a simple pendulum, explain softening spring non-linearity.	8
10 a.	Explain phase-plane trajectories for a linear system.	8
b.	Using method of isolines construct phase-plane trajectories for a linear damped system,	10
	where damping factor is 0.5 and natural frequency is 1 rad/s.	12