

P18MMDN241

8

8

4

UNIT - IV

7 a. Derive the relations,

$\frac{M}{I_n} = \frac{\sigma}{y^n} = \frac{H}{R^n}$ in plastic bending for a beam material following the nonlinear stress strain law.	10
--	----

- b. A rectangular beam having linear stress-strain behavior is 6 cm wide and 8 cm deep. It is 3 m long, simply supported at the ends and carries a uniformly distributed load over the whole span. The load is increased so that the outer 2 cm depth of the beam yields plastically. If the yield stress for the beam material is 240 MPa, plot the residual stress distribution in the beam.
- 8 a. For an elastic work hardening material, derive an expression for torque to cause elasto plastic yielding and show stress distribution.
 - b. Derive an expression for work consumption in drawing of rod and strip.
 - c. Estimate the force required to extrude aluminum curtain rail of I-section 12 mm high with 6 mm wide flanges, all 1.6 mm thick from 25 mm diameter bar stock. Take yield stress as 150 MPa.

UNIT - V

9 a.	Write the assumption made in slip line theory and derive Geiringer's continuity equation.	10
b.	State and prove Hencky's first theorem.	10
10.	Write short note on :	
	i) Convention for sliplines	
	ii) Chord method for constructing slipline nets	20
	iii) Properties of sliplines	
	iv) Hencky's Equations	

* * * *