

Time: 3 hrs

P.E.S. College of Engineering, Mandya – 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

First Semester, B.E.

Engineering Physics

Examination;

(Common to All Branches)

Max. Marks: 100

Course Outcome

The Students will be able to:

CO1: Understand the basic concepts and principles of Physics describing the phenomena associated with Engineering field. CO2: Explain/Describe the properties of various materials, light and sound related to Engineering applications. CO3: Formulate/Derive the Expressions for the concepts of Physics pertaining to Engineering field. CO4: Apply the knowledge of Physics to analyze/solve the numerical problems allied to Engineering field.

Note: Answer FIVE full questions, selecting ONE full question from each Unit

Physical constants: Electron mass, $m = 9.11 \times 10^{-31}$ kg, Electron charge, $e = 1.602 \times 10^{-19}$ C; Velocity of light, $c = 3 \times 10^8$ ms⁻¹; Planck's constant, $h = 6.626 \times 10^{-34}$ Js; Boltzmann constant, $K = 1.38 \times 10^{-23}$ JK⁻¹; Avogadro number, $N = 6.025 \times 10^{23}$ /mole; Permittivity of free space, $\varepsilon_o = 8.85 \times 10^{-12}$ Fm⁻¹.

Q. No	Questions	Marks	СО	BL	РО			
UNIT - I								
1 a)	Obtain an expression for Poisson's ratio in terms of Young's modulus, Bulk modulus and Rigidity modulus of the material.	8	CO3	L1	PO1			
b)	What are dielectric materials? Derive Clausius-Mossotti relation for a dielectric material.	7	CO1 & CO3	L1	PO1			
c)	A wire of 3m long and $0.625 \times 10^{-4} \text{ m}^2$ in cross section is found to stretch 0.003 m under a tension of 1200 kilograms. What is the Young's modulus of the material of the wire?	5	CO4	L2	PO2			
2 a)	Explain four types of dielectric polarization mechanisms.	8	CO2	L1	PO1			
b)	Deduce an expression for the bending moment of a beam with rectangular cross section.	7	CO3	L1	PO1			
c)	Calculate the polarization of dielectric constant 16 in presence of an electric field of 1000 V/m.	5	CO4	L2	PO2			
	UNIT – II							
3 a)	State Stefan's law of radiation. Explain the salient features of blackbody radiation spectrum.	8	CO1 & CO2	L1	PO1			
b)	State Heisenberg's uncertainty principle with an expression. Show that the electron doesn't exist inside the nucleus of an atom.	7	CO1 & CO2	L1	PO1			
c)	Compare the energy of photons with that of an electron when both are associated with a wavelength of 0.2 nm.	5	CO4	L2	PO2			
4 a)	Derive the expression for energy Eigen value and Eigen function for an electron in a potential well of infinite depth.	8	CO3	L1	PO1			
b)	Mention the characteristics properties of matter wave. Obtain the relation between group velocity, phase velocity and velocity of light.	7	CO1 & CO3	L1	PO1			
c)	Find the energy of an electron (eV) in a ground state and first excited state when it is trapped in an infinite potential well of width 1.5 Å.	5	CO4	L2	PO2			

	UNIT – III				
5 a)	Explain the significance of Fermi-level in an n-type semiconductor and obtain the expression for intrinsic charge carrier concentration.	8	CO2	L1	PO1
b)	Describe how quantum free electron theory has been successful in overcoming the failures of classical free electron theory.	7	CO1	L1	PO1
c)	The following data are given for intrinsic germanium at 300 K. $n_i = 2.4 \text{ x} 10^{19}/\text{m}^3$, $\mu_e = 0.39 \text{ m}^2/\text{Vs}$, $\mu_h = 0.19 \text{ m}^2/\text{Vs}$. Calculate the conductivity and resistivity of the sample.	5	CO1	L1	PO1
6 a)	Define Fermi energy and Fermi factor. Discuss the dependence of Fermi factor with energy and temperature.	8	CO1	L1	PO1
b)	(i) Explain the significance of Fermi level in an intrinsic semiconductor.(ii) Find the relation between Fermi level and energy gap of an intrinsic semiconductor.	7	CO2 & CO4	L1 & L2	PO1 & PO2
c)	Calculate the probability of an electron occupying an energy level 0.05 eV above the Fermi level at 300 K and 500 K in a metal.	5	CO4	L2	PO2
	UNIT - IV				
7 a)	With a neat diagram, discuss briefly the construction and working of Carbon dioxide laser.	8	CO1	L1	PO1
b)	Define Lambert's law. Obtain an expression for attenuation co-efficient in an optical fiber of length L.	7	CO1 & CO3	L1	PO1
c)	Write a note on Lasers in range finder with their advantages.	5	CO1	L1	PO1
8 a)	Distinguish between Single mode step index and Graded Index multimode optical fiber	8	CO1	L1	PO1
b)	Obtain the expression for energy density of radiation under equilibrium condition in terms of Einstein's coefficients.	7	CO3	L1	PO1
c)	A step index optical fiber has diameter of 60 μ m, a core index of 1.48 and the cladding index of 1.41. If the wavelength of the light source is 0.8 μ m, determine the number of modes present in the fiber.	5	CO4	L2	PO2
	UNIT - V				
9 a)	(i) Describe the experimental determination of velocity of ultrasonic in solids.(ii) Mention the basic requirements of the acoustically auditorium.	8	CO1	L1	PO1
b)	Describe the experiment to prove that a superconductor is a perfect diamagnet.	7	CO1	L1	PO1
c)	Discuss sharpness of resonance.	5	CO2	L1	PO1
10 a)	 (i) Define reverberation and reverberation time; and write an expression for reverberation time. (ii) Find the depth of a submarine if ultrasonic pulse reflected from the submarine is received in 0.33 s after sending out the ultrasonic waves. Given that the velocity of ultrasonic's in sea water is 1440 m/s. 	8	CO1, CO2 & CO4	L1 & L2	PO1 & PO2
b)	Write a note on (i) Superconducting magnet and (ii) Maglev vehicle	7	CO1	L1	PO1
c)	Define forced, damped and un damped vibration.	5	CO1	L1	PO1