U.S.N

\square

P.E.S. College of Engineering, Mandya - 571401

(An Autonomous Institution affiliated to VTU, Belagavi)

Third Semester, B.E. - Computer Science and Engineering Semester End Examination; Dec. - 2019
 Discrete Mathematical Structures

Time: 3 hrs
Max. Marks: 100
Note: Answer FIVE full questions, selecting ONE full question from each unit.
UNIT - I
1 a. In a high school, a teacher must select nine students from 28 juniors and 25 seniors for a volleyball team;
(i) In how many ways can this be done?
(ii) In how many ways this is done if 2 juniors and one senior who are best spikers and must there in the team?
(iii) If the team must have four juniors and five seniors
b. Define the term combinations with repetition and find the number of +ve integer solutions of the equation, $x_{1}+x_{2}+x_{3}+x_{4}+x_{5}<10$ where $x \geq 0$.
c. Find the coefficient of $x_{1}^{n_{1}} x_{2}^{n_{2}} \ldots . . x_{k}^{n_{k}}$ in $\left(x_{1}+x_{2}+x_{3}+\ldots . . x_{k}\right)^{n}$ where $n=n_{1}+n_{2}+\ldots .+n_{k}$ and find the coefficient of $w^{3} x^{2} y z^{2}$ in $(2 w-x+3 y-2 z)^{8}$

2 a. Simplify: (i) $\overline{[\overline{(A \cup B) \cap C}] \cup \bar{B}}$ using laws.
(ii) $\overline{A \Delta B}=A \Delta \bar{B}=\bar{A} \Delta B$ using membership table method.
b. Let $\mathrm{U}=$ set of all three digit integers and A_{i} represent integers in U where i is in $i^{\text {th }}$ place.

Compute; i) $\left|A_{1} \cup A_{2} \cup A_{3}\right|$
ii) $\left|A_{1}-\left(A_{2} \cup A_{3}\right)\right|$
iii) $\left|\overline{A_{1} \cup A_{2}}\right|$
c. i) If a dice is rolled three times what is the probability that all throws have same value?
ii) When a fair coin is tossed five times what is the probability that at least one head appears up?

UNIT - II

3 a. Define; i) Tautology ii) Logical equivalence iii) Converse, inverse, contra positive statements.
b. Simplify using laws of logic theory,
i) $[\neg(q \rightarrow r) \wedge r] \wedge(p \rightarrow q)$
ii) $\quad[(p \vee \neg q) \wedge(\neg p \vee \neg q)] \vee q$
c. "Raju's car keys are in his bag or they are on the school table.

Raju's car keys are not on the school table.
Therefore Raju's keys are in his bag."
Express in the symbolic form and check validity of the argument.

4 a. Represent the statement using quantifiers and also negate each:
i) Every integer is not divisible by 5
ii) Some triangles are right angled triangle
iii) At least one integer is even
b. State; i) Rule of universal specification
ii) Rule of existential specification
iii) Rule of universal Generalization.
c. Express (for $x \in \mathbf{R}=$ Universe) the argument and check validity.
"If $3 x-7=20$ then $3 x=27$.
if $3 x=27$ then $x=9$.
Therefore if $3 x-7=20$ then $x=9$.

UNIT - III

5 a. Prove by Mathematical Induction Principle $4 n<n^{2}-7 \quad \forall n \geq 6$.
b. Prove by all three methods. For every integers "If n is odd then $n+7$ is even".
c. If L_{n} represents Lucas number and F_{n} represents Fibonacci number. Prove that, $\forall_{n} \in Z^{+} \quad L_{n}=F_{n-1}+F_{n+1}\left(\right.$ Lucas number $L_{n}=L_{n-1}+L_{n-2} \forall n \geq 2$ where $L_{0}=2, L_{1}=1$

6 a. Define: i) One-One functions ii) Onto functions, with example for each.
b. Find the range of the following functions:

$$
g: \mathbf{R} \rightarrow \mathbf{R} g(x)=x^{2}
$$

$f: Z^{+} \rightarrow \mathbf{R} f(x)=\frac{1}{x}$ excluding zero.
$h: Z \times Z \rightarrow Z \quad h(x, y)=2 x+3 y$
c. i) Define $S(m, n)$, find $S(3,3), S(3,4)$.
ii) If $f(x)=2 x+5$ a function on \mathbf{R}. Prove that f is invertible function and find the inverse function of f.

UNIT - IV

7 a. i) Define a Matrix and Digraph of a binary relation on A.
ii) Find the conditions that represent reflexivity, symmetry, transitivity in the matrix form.
b. Let " R " be relation defined as $(a, b) \in R$
iff " $a+b=$ even" on $A=\{1,3,4,7\}$
i) Prove that R is an equivalence relation (Justify)
ii) Find the partition induced by R on A.
c. How many equivalence relations are there on A with m elements (explain).

8 a. Draw Hasse diagram representing positive divisors of $15,30,50$.
b. Define; i) Partially ordered set ii) Totally ordered set iii) Lattice.
c. If S, R are two relation defined as "exactly divides" and " $a+b>3$ " on $A=\{1,2,3,4\}$. Find $S, R, S^{\circ} R, R^{\circ} S, S^{2}, R^{2}$

UNIT - V

9 a. Define a group and give an example of a group and not a group.
b. i) Show that any group G is an Abelian group iff $(a b)^{2}=a^{2} b^{2} \forall a, b \in G$
ii) State Lagrange's theorem.
c. Let $f:\left(R^{+}, \times\right) \rightarrow(R,+)$

Where $f(x)=\log _{10} x$
i) Prove that f is both one-one and onto
ii) f is an isomorphism.

10a. Write short notes on;
i) Encoding
ii) Decoding
iii) Haming metric
b. Define the encoding function: $E: Z_{2}^{3} \rightarrow Z_{2}^{6}$ by means of the parity-check matrix.

$$
H=\left[\begin{array}{llllll}
1 & 0 & 1 & 1 & 0 & 0 \\
1 & 1 & 0 & 0 & 1 & 0 \\
0 & 0 & 1 & 0 & 0 & 1
\end{array}\right]
$$

i) Determine all code words,
ii) Does this code correct all single errors in transmission?
c. Prove that in a group code, the minimum distance between the distinct code word is the minimum of the weight of the non zero elements of the code.

