U.S.N					

P.E.S. College of Engineering, Mandya - 571 401

(An Autonomous Institution affiliated to VTU, Belagavi)

Third Semester, B.E. - Computer Science and Engineering Semester End Examination; Dec. - 2019 Data Structures

Time: 3 hrs Max. Marks: 100

Note: i) PART - A is compulsory. Two marks for each question.

ii) PART - B: Answer any <u>Two</u> sub questions (from a, b, c) for Maximum of 18 marks from each unit.

Q. No.	Questions	Marks		
	I: PART - A	10		
I a.	What are the first five Fibonacci numbers? Discuss how Fibonacci series is developed?	2		
b.	Discus with an example, how to check whether a queue is full or not in circular queue?	2		
c.	Write the difference between static and dynamic memory allocation.	2		
d.	Define complete binary and almost complete binary tree.	2		
e.	Define minimum heap and max heap with example.	2		
	II: PART - B	90		
	UNIT - I	18		
1 a.	Define stack. Write a C program to implement different operations performed on stack.	9		
b.	Define Recursion. Solve Tower of Hanoi problem using C program.	9		
c.	Convert following infix expression to prefix and postfix. Also write the representation to each,	9		
	A + (((B - C) * (D - E) + F) / G(H - J).	9		
	UNIT - II	18		
2 a.	What are the advantages of linked list compared to array? With example, illustrate how a node			
	is inserted at front in a Single linked list? Explain.			
b.	Define header node with example. Explain the advantages and disadvantages of using the	9		
	header node during the creation of list.			
c.	Define Doubly linked list with pseudo code. Explain how to insert a node to the right and left	9		
	of the given node in a doubly linked list?	9		
	UNIT - III	18		
3 a.	Write a C program to reverse a list with comments.	9		
b.	What is a queue? What are the disadvantages of a normal queue in array implementation?	9		
	Illustrate with example.	I		
c.	Define priority queue Explain different types of priority queue with example.	9		

P170	CS33 Page No.	2
	UNIT - IV	18
1 a.	Define a Binary tree. Discuss different operations that can be performed on a binary tree with example.	9
b.	Write a C program to traverse a tree inorder, preorder and post order.	9
c.	How node is represented in binary tree? What is the purpose of internal and external node Discuss with example.	
	UNIT - V	18
5 a.	Illustrate the working of radix sort with example.	9
b.	Write a pseudo code for heap sort procedure.	9
c.	List different variations of the sequential search algorithm? Explain any two of them.	9

P17CS33